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ABSTRACT

Operations research analysts often use a hierarchy of combat models to provide
insight to military decision makers. Briefly, lower-level, higher-resolution models
provide input to higher-level, lower-resolution models. This allows analysts to explore
how engineering and tactics changes can affect campaign effectiveness. This thesis builds
upon previous research and examines various methods for employing distributions of
engagement-level model outputs as input to campaign-level models, instead of just using
the average. We contrast methods for “linking” the engagement-level model to the
campaign-level model. Previous research indicates that when expected values alone are
propagated through layers of combat models, the final results will likely be biased, and

risk underestimated.

An air-to-air engagement model is developed to generate a data library that is
used as input in a stochastic Lanchester campaign model. A variety of sampling methods
are employed to sample from the engagement model’s output data library to provide
input to the campaign model. The results indicate that the manner in which the
engagement and campaign models are linked has substantial impact on the estimates of
operational effectiveness and risk. Additionally, our research illustrates how running a
designed experiment on the engagement-level model, to generate a library of data that

can be linked to the campaign-level model, can support robust decision making.
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THESIS DISCLAIMER

The reader is cautioned that the computer programs presented in this research may
not have been exercised for all cases of interest. While every effort has been made, within
the time available, to ensure that the programs are free of computational and logical
errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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EXECUTIVE SUMMARY

Combat simulations are widely used to simulate tactical to campaign operations to
provide insight to decision makers. These simulations vary in the amount of detail they
contain, and are sometimes referred to as “lower level and higher resolution” or “higher
level and less resolution.” The higher the level, the less the detail, but the greater and
more aggregated the span of simulated operations. All combat models require input data,
sometimes estimated from the result of live tests or exercises, or, as we discuss,
sometimes from the output of lower-level combat simulations. The process of utilizing
lower-level model outputs as input to a higher-level model is referred to as a hierarchy of
models. This hierarchy allows the analyst to explore how engineering and tactics changes
can affect campaign effectiveness. Operations research analysts of many countries utilize
this hierarchy of simulations to provide insight to their leadership. Instead of conducting
real world exercises to decide which platforms to procure, hierarchical simulation is a
useful tool to explore engineering effects on missions and campaigns since there is no
potential for loss of money and lives. By using hierarchal simulation, the Turkish Air
Force can gain insight into questions such as “how will better sensors or weapons affect
the outcome of a series of air battles?” Senior leadership can then use this information to
determine the best investments to achieve and sustain warfare dominance within a

particular budget.

This thesis builds upon previous error propagation research conducted by U.S.
Navy LT Russell Pav (2015) and examines various methods for employing distributions
of engagement model outputs as inputs to campaign models, instead of just using the
average. We contrast methods for “linking” the engagement-level model to the campaign
model. Previous research indicates that when expected values alone are propagated
through layers of combat models, the final results will likely be biased, and risk

underestimated.

For this thesis, we first develop an engagement-level model for a two-versus-two
air engagement between jet fighters in the stochastic, agent-based Map Aware Non-

uniform Automata (MANA) simulation environment (MclIntosh, 2009). The measures of
XiX



performance (MOPs) for this model are based on open source operating characteristics of
jet fighters—such as speed, range, and weapon probabilities of kill. These are inputs to
the MANA simulation. The measures of effectiveness (MOEs) are losses, time of battle,
and probability each side wins; these are the outputs from the engagement-level model.
Variability in the MOPs is induced and explored using two different designs of
experiments (DOEs), the Nearly Orthogonal Latin Hypercube (NOLH) and the
Resolution V Fractional Factorial (R5FF), and we examine how the choice of
experimental design impacts results. The MANA runs yield a library of outputs that can

be accessed as needed by the campaign model.

Next, we construct a stochastic Lanchester Linear Law campaign model. Each
campaign simulates four discrete engagements of 25 versus 25 jet fighters, and each
engagement utilizes a breakpoint such that the engagement is terminated as soon as one
side is depleted to a quarter of their original strength. The attrition coefficients for the
stochastic Lanchester campaign model are determined by the losses and time of battle
obtained from the engagement-level MANA model. Because MANA is stochastic, many
replications are run, producing a distribution of outcomes. However, the campaign-level
model takes scalars as input. Thus, the research question is how best can we link these
two models to account for the variability? Several methods for using the engagement-
level results as inputs to the campaign-level simulation are assessed and compared in this
thesis.

This research aims to answer following research questions:

o What are the results of using different methods (e.g., taking the mean,
random sampling, metamodeling, etc.) to convert outputs from a lower-
level air combat model to inputs to a campaign-level model?

. Is using a lower-level model’s output as input to a higher-level model a
reasonable approach for air combat models?

. Does use of the design generated from NOLH and R5FF methods cause a
significant change in outputs?

Analysis indicates that the sampling methodology and the manner in which the
engagement and campaign models are linked have a significant impact on the estimate of

operational effectiveness and risk. Beyond conducting random sampling on a different
XX



scenario than the one Pav used, this study employed additional techniques to sample from
or link to the lower-level engagement model. In particular, we explored and compared the
embedded metamodeling and linked metamodeling approaches, and established a key
difference between the two; namely that the deterministic embedded metamodeling
technique can lead to biased results and underestimation of risk. For example, Figure 1
illustrates the difference between the deterministic embedded metamodeling approach
and the linked metamodel approach, for a simple one-variable experiment. The blue dots
connected by the smoother line represent the result of evaluating a deterministic
composite formula for P(Win) that is a function of system-level variables at multiple
design points. The formulas were developed by finding a regression response at each
modeling level. Since this example only varied one of the factors (variables), the other
variables were fixed at their baseline levels. The red dots with the standard deviation
error bars represent variability in the estimate for P(Win) with the models directly linked.
That is, a sample of engagement-level outputs, across many design points, was run in
multiple replications of the stochastic Lanchester campaign model. The results show that
the deterministic embedded metamodel would usually result in overestimating P(Win)

and underestimating risk.

XXI



P{Win} Campaign Model (Embedded MetaModel) in blue
compared to
P{Win} Campaign Model (Linked MetaMedel} in red
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Figure 1. Comparison of Deterministic Embedded Metamodel results (blue) to

Linked Metamodel results (red)

Lastly, we emphasize that an excellent method for systematically exploring
uncertainties in the scenario is design of experiments; and the resulting output is capable
of adequately characterizing variability and risk. In our experimentation, we used both
the Nearly Orthogonal Latin Hypercube (NOLH) and the Resolution 5 Fractional
Factorial (R5FF) designs. If time permits, it would be desirable to supplement the
desirable features of the space-filling NOLH with the corner-sampling R5FF. In Chapter
IV, we demonstrated how the campaign model linked to DOE output is much more
effective and useful for quantifying risk than the use of the deterministic embedded
metamodel approach. This is because the designed experiment captures the variability
that results when engineering factors, many of which we may be uncertain about or do

not have control over, are varied over reasonable ranges.
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l. INTRODUCTION

“Peace at home, peace in the world.”

—Mustafa Kemal Ataturk

Models are an essential element in planning and resourcing for air combat. A
model, whether in the form of a diagram, a set of differential equations, or a computer
simulation, permits us to generate information as to possible outcomes before we engage
resources. Because we have come to depend on models to provide insight and generate
solutions, the data used in computer simulated air combat modeling must be as precise as
possible. As a method used in air combat modeling, hierarchal combat modeling is
widely used to estimate the effects of engineering changes on the outcomes of a
campaign. To do that, high-resolution low-level models provide inputs to low-resolution
higher-level models. During this process, stochastic low-level models produce outputs
with probability distributions, and, if the variance of this distribution is not taken into
account, when the data is applied to higher-level models, small errors can become much
larger errors. This phenomenon is known as error propagation within hierarchal combat
models. Error propagation can cause uncertainty regarding the outcomes of a campaign,

which is a risk that decision-makers should assess carefully (Pav, 2015).

In this chapter, we first define combat modeling and give reasons for the use of
combat modeling. In the literature review section, we discuss air combat modeling as it
pertains to this study. Then, we review hierarchal modeling applications in both combat
modeling and other scientific areas. We also discuss different model levels associated
with hierarchal modeling and error propagation/assessment. Finally, research questions
and the scope of the thesis are presented, including our objectives and methodology.

A BACKGROUND: DEFINITION AND NEED FOR COMBAT MODELING

Today’s military operations are complex and often risk both money and human
lives. Thus, understanding combat is critical. Towards that end, analysts around the world

1



use combat modeling as a tool to discover solutions for real life problems. In their book,
Combat Modeling, Alan Washburn and Moshe Kress define a model as “A model is an
abstraction of reality” (Washburn & Kress, 2009, p. 1). They go on to explain that “Our
limited intellects permit us to deal only with abstractions that retain the essence of the
matter without the distracting details. As a great tool, models are used for reasoning,
insight, planning, and prediction. They need to capture the key factors of the object or
situation and faithfully represent them so that the models can be utilized effectively”
(Washburn & Kress, 2009, p. 1). Having the goal of solving real problems, these models
can be a set of differential equations or a diagram or a computer simulation model. In
order to effectively use this tool, operations research analysts strive to solve real life
problems by generating models that include relevant details of these problems. The utility
of these models is that they permit us to investigate situations without the risk of losing

money and lives.

An important early combat model was developed by Frederick W. Lanchester
during his studies on attrition during World War 1. Lanchester, an engineer and a car
company owner in London, was interested in aerial battles and developed differential
equations to predict the outcome of battles (Lanchester, 1916). Since then, many combat
models have been generated and used for similar purposes. In practice, most combat
models are a description or representation of weapon systems and combat operations
implemented in a computer program. Combat models are a crucial tool in the analysis of

military operations, tactics, and strategies.

Testing a weapon system by employing combat modeling simulations is
significantly less expensive than experiments using real weapon systems: “Combat
models provide information that assists decision-makers in making and justifying
decisions that involve the expenditure of billions of dollars and impact many lives”
(Thomas W. Lucas, Turker Turkes, 2004, p. 1). For instance, the Turkish Air Force’s
capabilities are mostly based on Lockheed Martin’s F-16C and F-16D multirole fighter
aircraft (IHS Jane’s, 2016). The unit cost of a single F-16C aircraft is $18.8 million
(fiscal 1998 constant dollars) (U.S. AIR FORCE, 2015). Moreover, Turkish F-16Cs carry
AIM-9S/X Sidewinder (Air Intercept Missile) and AIM-120C AMRAAM (Advanced

2



Medium Range Air-to-Air Missile) missiles for air-to-air operations. The cost of a single
AIM-120C AMRAAM missile is about $1.2 million and the cost of a single AIM-9S/X
Sidewinder missile is about $600,000 (IHS Jane’s, 2016). In order to evaluate the tactical
effectiveness of these missile systems in combat, performing a real exercise would be
very costly and limited in scale. Instead of live exercises, using high-resolution combat
models provides helpful insights about the tactical effectiveness of these aircraft and
missile systems. Moreover, combat modeling can be used when the systems do not
actually exist. That is, they can be used to help guide investment decisions in developing

future systems.

In addition, combat modeling does not require actual military assets and personal.
Hence, there is no loss of military assets or casualties when running a computer-based
combat simulation. Since all scenarios are executed on the computer, there is no need to

have an actual enemy force to fight against

While combat models are useful in providing insight about military issues or
weapon systems, they do not provide precise and actual outcomes of a real campaign.
Therefore, analysts should be careful when building and using combat models,
determining the inputs, and analyzing the outputs of the model. These fundamental steps
of modeling must be studied carefully; otherwise, outcomes of a combat model may lead

decision-makers to wrong choices—which may cause the loss of many lives.

As one of the methods of combat modeling, hierarchal combat modeling is used
by today’s military forces in many countries to investigate the effects of engineering level
changes on the outcomes of a campaign, to analyze alternative force structures, and to
learn about which weapons and weapon platforms are crucial to develop and procure. In
the following literature review section, previous studies and more detailed information

about hierarchal combat modeling is presented.

B. LITERATURE REVIEW

This section contains a literature review and explains air combat modeling and

hierarchal combat modeling in the context of this research.



1. Air Combat Modeling

As a branch of today’s warfare, air combat contains many interacting systems that
are operated by both human and command/control (C2) operators. To assess the
effectiveness of aerial systems, “Computer-based air combat modeling is a powerful tool,
widely accepted for its usefulness. The extremely high cost of operating aircraft and their
weapons has led to a rapid growth in the development and use of computer simulation
models as a basis for tactics development, pilot training, and operational evaluation of
weapon systems” (Rao, Lucas, Morley, Selvestrel, & Murray, 1993). Additionally,
procuring, operating, and maintaining multi-integrated air combat systems are very
expensive compared to the cost of many army vehicles and weapon platforms. For
instance, a German leopard tank’s cost is $6,790,000, whereas a F-35A multi-role fighter
aircraft is $90,000,000 (IHS Jane’s, 2016). To reduce cost, simulation modeling provides
an opportunity for investigating the effects of technological progress on the effectiveness
of current and potential aerial systems. Briefly, air combat modeling is a specified field of

combat modeling where air-to-air or air-to-ground operations are modeled.

Reaping the benefits of air combat modeling often requires time-consuming and
complex analysis since these models require specific inputs matching the capabilities and
tactics in air operations. Interactions between new aerial systems and current tactics must
be analyzed carefully before decision makers determine whether or not to procure a new
aerial platform or weapon system. Consequently, employing air combat modeling saves a
lot of money; however, a substantial investment in time and effort is necessary for

credible analysis.

From the beginnings of combat modeling as a campaign analysis tool, there have
been many research studies that modeled air combat. As the author mentioned before,
Frederick W. Lanchester’s effort is one of the oldest air combat modeling studies.
Lanchester published a book entitled Aircraft in Warfare: the Dawn of the Fourth Arm in
1916 and shared his ideas about aerial warfare (Lanchester, 1916). In the book,
Lanchester described a family of differential equations that modeled how two military

forces would attrite each other in combat. Lanchester developed two different models; he



believed that “square law,” one of the models, would describe “modern” air combat.

These equations are described in the second chapter of this study.

There have been many studies on the validity of various forms of Lanchester’s
laws over the years; for example, see Engel (1954), Hartley (2001), and Lucas and
Dinges (2004). As a whole, these researchers find that no consistent Lanchester law
dominates, but a combination of Lanchester linear and log laws fit best. Recently, three
academicians at the University of York, lan Horwood (Historian), Niall MacKay
(Mathematical Physicist), and Christopher Price (Historian) analyzed historical data of
various air campaigns (Battle of Britain, 1940; Pacific Air War, 1941-1945; Korean War,
1950-1953) and found results opposed to what Lanchester believed. Their starting
hypothesis was that air combat is a set of duels, best modeled as random with the
Lanchester linear law. They postulated that air combat does not obey a square law, based
on their analysis of historical air combat data. They concluded that air combat is 80%
linear-law and 20% asymmetric (Horwood, Mackay, & Price, 2014). As a result of their
conclusion, this study employs a linear law in the campaign-level model instead of the

more traditional square law.

After Lanchester’s studies, many air combat modeling equations, tools, and
simulation programs have been developed based on derivatives and extensions of
Lanchester’s original two laws. The U.S. Air Force is currently using many different
simulation programs in campaign analysis, depending on the size of the campaign or the
operation that they are interested in and study objectives. BRAWLER is one of these
simulation programs. In the website of Defense Systems Information Analysis Center of
U.S. DOD (https://www.dsiac.org), BRAWLER is described:

... Simulates air-to-air combat between multiple flights of aircraft in both
the visual and beyond-visual-range (BVR) arenas. ... This simulation of
flight-vs.-flight air combat is considered to render realistic behaviors for
military trained fighter pilots. BRAWLER incorporates value-driven and
information-oriented principles in its structure to provide a Monte Carlo,
event-driven simulation of air combat between multiple flights of aircraft
with real-world stochastic features. The user decides the pilot’s decision
process, including doctrine, mission-specific objectives, and tactics; level
or training and experience; and perceived capability of the enemy.
(Brawler, 2015)
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In Figure 1, a visualization of an air-to-air combat model in BRAWLER is shown.
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Figure 1.  Air-to-Air Combat Model in BRAWLER. Source: Brawler
(2015)

Another simulation program that is currently used by the U.S. Navy, U.S. Air
Force, and Turkish Air Force is the Synthetic Theater Operations Research Model
(STORM). STORM *“is the primary campaign analysis tool used by the Office of the
Chief of Naval Operations, Assessment Division (OPNAV N81) and other Department of
Defense organizations to aid in providing analysis to top-level officials on force

structures, operational concepts, and military capabilities” (Seymour, 2014, p. v).

In many OPNAV NB81 studies, the stochastic, mission-level model BRAWLER is
run to generate input for the stochastic, campaign-level simulation STORM. In this
thesis, we employ a simpler pair of engagement-level and campaign-level models of air-

to-air combat to investigate error propagation within hierarchal air combat models.



2. Hierarchical Modeling Approach

As a type of simulation modeling, hierarchal modeling has been used in many
scientific studies in different science fields, such as environmental science, social science,
and military science, etc. For instance, hierarchal modeling has been widely used in
epidemic disease analysis, where the model can map the possible direction and the
number of people potentially affected by the disease (A. B. Lawson, 2013). The methods
and analysis utilized in these studies can be different, but the basic idea is similar. Lower-
level models provide inputs for upper-level or aggregate models. Christopher K. Wikle
described the need for hierarchal modeling in environmental science in one of his studies:
Hierarchal Models in Environmental Science. He stated that environmental systems
include spatial-temporal processes and they are interacting with different scales since
they are very complicated. The processes such as monitoring networks, computer models,
remote sensing platforms, and geographical information systems generate a large amount
of data (Wikle, 2003). Wikle mentioned that it is not enough to evaluate such processes
with a joint perspective. Therefore, there is an indispensable need of hierarchal modeling
to provide a coherently connected system of conditional circumstantial models and return

reasonable outcomes for given processes.

Another important usage of hierarchal modeling has been with military
simulations. In the military simulation world, operations research analysts of many
countries explore the effects of engineering-level changes on campaign output by
employing hierarchal combat modeling. Involving the detailed and sophisticated features
of weapon platforms, high-resolution lower-level models, such as those of one-on-one
combat, are readily simulated with current simulation software programs. Then,
campaign-level models use the output of these higher-resolution models as input.
Simulating campaign-level combat is a very complex and time-consuming study, and
must be done at a less detailed (i.e., more aggregated) level of resolution. It is important
to address both the detailed aspects of combat represented in high-resolution models
(such as engagement-level and mission-level models) and the broader context of

campaigns.



In order to conduct a useful and reasonable campaign analysis, objectives, tasks,
and metrics of the campaign must be well defined. Essential details of the mission should
be taken into consideration, analyzed, and included as an assumption in the campaign
analysis process. Therefore, many countries are using hierarchal families of combat
models in their studies. Typically, they employ campaign-level models that are fed by the
outputs of mission-level models, which in turn are fed by the inputs of even more detailed
models. This hierarchy among simulations is often displayed as a pyramid. The
foundation of the pyramid consists of many highly-detailed and narrowly focused
physics-based models. The top of the pyramid typically consists of a single highly-
aggregated campaign-level model. A version of this pyramid that OPNAV N81 uses is

shown in Figure 2.
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As an example of hierarchal combat modeling, one of outputs of one-on-one
aircraft engagements, such as a missile’s probability of Kill, are generally used as input
for a mission-level model. The output of this mission-level model (say an exchange ratio)

may then be used as an input to a campaign-level simulation.

By utilizing hierarchal combat modeling, decision makers can observe the effects
of changes in weapon platforms on tactical performance and campaign effectiveness. As
well as many other countries, the U.S. Air Force and U.S. Navy are using hierarchal
combat modeling to determine the force structure required to meet future military needs.
The U.S. Air Force Analysis Panel’s presentation slides on an analytic framework and
analytic agenda show (see Figure 3) a similar hierarchal pyramid of simulation models
(Cerniglia-Mosher, 2009).

ENGINEERING

Figure 3.  Hierarchical Combat Modeling Pyramid. Source: Cerniglia-
Mosher (2009)

All of this begs the question: why not put all of the detail into one campaign-level
model? Simply put, it is infeasible given time and processing constraints to run a high-
resolution campaign-level simulation over the necessary replications to generate the
required output. Moreover, the complexity of doing so is staggering (Lucas and
McGunnigle 2003). At this point, hierarchal combat modeling allows analysts to link
low-level details to campaign-level outcomes—and saves a lot of time and money, in
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comparison to conducting live exercises. This process enables the objectives, tasks, and
metrics of the campaign to be analyzed and included in each model level. The
fundamental levels of hierarchal modeling are discussed in the following paragraphs of
this thesis.

a. Engagement /Engineering Level Models

Operations research analysts study the quantitative characteristics of military
assets, such as probability of hit, radar range, missile range, etc. In order to determine
how effectively military assets perform in tasks and missions, these characteristic
quantities are captured using the output of highly-detailed engineering-level simulations
(T.W. Lucas, personal communication, September 9, 2015). These kinds of models are

known as entity, engineering, or engagement-level models.

Additionally, these models are useful since the physical testing of military
equipment is very costly. As it was mentioned before, conducting a military exercise with
a loaded aircraft can cost millions of dollars. These high costs prevent armed forces from
conducting more than a handful of live fire exercises and tests to evaluate their
effectiveness. Before proceeding to the next step (i.e., building prototypes of military
assets, missiles, and conducting live tests) engineering-level models may provide
information to ensure that the design is reliable and plausible. Such an approach can save
millions of dollars.

b. Mission-Level Models

Any kind of military operation involves small- or large-scale missions. For each
mission type, several tactics can be developed and used in these operations. Before
applying these tactics in related operations, they should be examined to see how effective
and plausible they are. Therefore, live-fire exercises are an option for armed forces to test
their tactics. However, conducting live-fire exercises to test these tactics is very
expensive and may end up with the loss of costly equipment and lives. As a result,
mission-level combat simulations are often used to evaluate the effectiveness of specific
military assets and tactics in achieving mission objectives. The results of mission-level

simulations are used by armed forces to develop tactical doctrine and to assist military
10



personnel in learning how to use military platforms, such as aircraft, helicopters, and
missiles. Lucas stated in his lecture notes that mission-level models are commonly used
to study doctrine, plan missions, assess force employment options, and evaluate force
modernization choices (T.W. Lucas, personal communication, September 9, 2015).

C. Campaign-Level Models

Campaign-level models are useful not only in simulating campaigns and
operations, but also in shaping future force structures. In the military world, experience
has shown that the acquisition of a major weapon platform regularly takes more than
decade. For example, Turkey signed a contract to procure 100 F-35A single-engine,
single-seat, stealth multirole fighters for $175M each on 11 June 2002 (United States
Government Accountability Office, 2004). After many years, Turkey was able to order
six of these fighters, which are assured to be delivered by 2018. The rest of the aircraft
are scheduled to be delivered at a rate of 10 fighters per year in subsequent years. This
process showed that it will take almost 15 years to get the first F-35A aircraft and will
take 10 years more to receive all 100 F-35A fighters. The Turkish Air Force plans to
operate these multirole aircraft for half a century. Thus, these aircraft are a major pillar in
Turkey’s security. There will likely be future unanticipated conflicts which Turkey must
be ready for over that time period. At this point, campaign models provide the ability to
analyze the results of possible future conflicts given a specific force structure. Therefore,
campaign modeling is a uniquely powerful tool in identifying capability gaps and in
helping generate new and effective force structures based on future platform acquisitions.
On the other hand, campaign models also allow armed forces to analyze the capabilities
of weapons platforms currently in the force.

3. Error Assessment of Hierarchical Combat Modeling

By utilizing hierarchal combat modeling, decision makers can observe the
possible effects of changes in weapon platforms on tactical performance and campaign
effectiveness. Hierarchal combat modeling has proven beneficial to decision makers;
however, this process may involve some error since the sample mean (average) outputs of
lower-level models are typically used as inputs to higher-level models. Because the

11



outputs of the lower-level models generally have probability distributions, if the
variability in lower-level models is ignored, then the outcomes of higher level model
simulations may be biased or have understated variance (Lucas, 2000; Pav, 2015).
Ultimately, the errors caused by using the means of lower-level models may result in
biased and suboptimal decisions. As a consequence, operations research analysts cannot
accurately quantify and assesses the risk. Sam Savage emphasized the importance of
assessing risk in his research paper: The Flaw of Averages Why We Underestimate Risk in
the Face of Uncertainty. Savage (2002) stated that “we need to stop thinking of
uncertainties as single numbers—the average—and instead begin thinking of them as
shapes, or distributions. And to deal with those distributions, we need to take advantage

of modern computers for probability management” (p. 3).

C. RESEARCH PROBLEM AND RESEARCH QUESTIONS

As mentioned in the literature review section, using output from a lower-level
model as input to a higher-level model by utilizing one of many possible sampling
methods involves uncertainty. For instance, calculating a factor for a campaign
metamodel by taking a sample mean of the output of an entity-level model is basically
using point estimation, and therefore propagating forward merely a single point estimate.
Since the sample mean is typically used, the variance of entity-level model output is not
accounted for in the campaign metamodel. In other words, the uncertainty in the lower-
level model is not propagated through higher-level models. This uncertainty may cause a
bias in the outputs of the campaign model. Utilizing different sampling methods may
decrease the uncertainty; however, no method has been shown to fully propagate
variances through the hierarchal models in use by militaries around the world.
Consequently, in order to provide insights about error propagation and generate

alternative ways to reduce uncertainty, this research is guided by the following questions:

1. What are the results of using different methods (e.g., taking the sample
mean, random sampling, design of experiment, etc.) to transform outputs
from a lower-level air combat model into inputs to a campaign-level
model?

2. Is using a lower-level model’s output as input to a higher-level model a
reasonable approach for air combat models?

12



3. Does use of the design generated from a space-filling nearly orthogonal
Latin hypercube (NOLH) or a resolution V fractional factorial (R5FF)
impact the results?

D. SCOPE OF THE THESIS

This study explores how the variance propagates through hierarchal air combat
models using an engagement-level model and a campaign-level model. Several sampling
methods are used to quantify the error propagation through our pair of hierarchal models.
A two-on-two fighter aircraft engagement is selected as an engagement-level model and a
basic engagement scenario is modeled using Map Aware Non-uniform Automata
(MANA), an agent-based simulation (MclIntosh, 2009). The outputs of the engagement-
level model are fed into a stochastic Lanchester linear law campaign model by employing
different sampling methods. The Python (an open source available at
http://www.python.org.) programming language is used to simulate the stochastic
Lanchester campaign. The outputs of the campaign Lanchester model include the
probability of winning and the expected number of casualties when the campaign is won.
These outputs are analyzed and compared using statistical tools such as Python and
JMP(an open source available at http://www.jmp.com). Using a data library generated by
executing designs of experiment on the MANA engagement model, regression analysis
and other techniques are utilized to determine the effects of engineering-level changes on
campaign output. Finally, the influence of the different sampling methods on risk
assessment is evaluated, and suggestions are presented to enable adequate risk

assessment.
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II.  MODELING, SAMPLING AND ANALYSIS TOOLS

In this chapter, we present an overview of the modeling, sampling, and analysis
tools used in this study. As previously mentioned, we use MANA to construct the
engagement-level model scenario. To explore the effects of different combinations of
performance characteristics on the aircraft’s performance, both Nearly Orthogonal Latin
Hypercube (NOLH) and Resolution V Fractional Factorial (R5FF) experimental designs
are utilized. Both of these methods significantly downsize the required number of runs, as
compared to a full factorial design that would test all possible combinations of the

experimental factors (variables).

In this chapter, we briefly discuss the use of MANA, design of experiments
(DOE), random sampling, and statistical metamodeling. We also describe the two
software programs that we use for campaign-level modeling and statistical analysis.

A USING NOLH AND R5FF EXPERIMENTAL DESIGNS TO EXPLORE
FACTOR COMBINATIONS OF THE MANA ENGAGEMENT MODEL

Despite the fact that combat simulation modeling provides benefits and
convenience for operations research analysts, it comes with substantial challenges. As
mentioned in the literature review section, compared to live fire tests using military
assets, these simulations are less expensive and dangerous. However, they are very
complex, time-consuming, and require a deep knowledge of different computation
programming languages and software. Due to the complexity of the phenomena being
modeled, combat models tend to be exceedingly complex, often with thousands of input
variables, many of which are uncertain. Moreover, they often take a long time to run even
one replication. A single large-scale STORM run may take several hours to run. The
large number of inputs of interest usually makes it infeasible to run all combinations of
input variables that an analyst desires. To fully explore and evaluate an experiment with k
variables, each with m levels, it would require a number of experiments equal to mk
multiplied by the number of stochastic replications per combination of variables

(Sanchez, Lucas, Sanchez, Nannini, & Wan, 2012). This type of design, that explores all
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possible combinations of variables in a brute-force manner, is called a full factorial. To
give an example, suppose a simulation has 20 factors that an analyst wished to explore,
each with three levels (say that corresponded to “low,” “medium,” and “high). In order to
explore all of the factor combinations, 32° runs, which is 3,486,784,401 (about 10%°), is
required. If each run takes just one minute, then running all combinations on a single
processor would take 6,634 years. If replication is necessary, because the simulation is
stochastic, then the time required must be multiplied by the number of replications
needed. Luckily though, “Efficient design of experiments can break this curse of
dimensionality at a tiny fraction of the cost,” (Sanchez, Lucas, Sanchez, Nannini, & Wan,
2012). In order to break the curse of dimensionality, there are many options, and we
explore the use of the Resolution V Fractional Factorial (R5FF) and the Nearly
Orthogonal Latin Hypercube (NOLH). By carefully selecting input combinations, these
designs reduce the number of simulation runs required to extract valuable information.
By confounding estimates of higher order terms that are usually not of practical size or
interest to analysts, R5FFs dramatically reduce the number of runs needed while
providing the ability to estimate all main effects of the factors and all of their two-way
interactions (Kleijnen, Sanchez, Lucas, & Cioppa, 2005). However, R5FFs only sample
each factor (variable) at two levels, at the so-called “corners” of the input space. In order
to reduce the number of required runs while simultaneously providing the analyst with
analysis flexibility not provided by the use of the R5FF, NOLHSs are often used (Cioppa
and Lucas, 2007). NOLHs are efficient and space-filling designs that provide information
throughout the experimental region, including the interior. They allow users to fit a
variety of metamodels, including regression models with second and higher-order terms;
most commonly, quadratic and two-way interaction effects. In Figure 4, we compare the

space-filling capabilities of both design types for four factors with two levels each.
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Figure 4. R5FF (16 DPs) vs. NOLH (17 DPs)

For this study, both the R5FF and the NOLH and are chosen to generate
experimental designs for the MANA model. There are several reasons which led the
author to use NOLH and R5FF designs. First of all, both designs are efficient in terms of
required runs. However, the space-filling feature of the NOLH gives it a potential
advantage in comparison to the R5FF design. In a particular, because it is space-filling,
output from the NOLH can be used to identify nonlinear relationships and “knee in the
curve” values as well as breakpoints and step functions. The R5FF is sometimes desirable

because it tests at the more extreme “corner” points.

Previously, both of these experimental design methods were used in a thesis study
by LT Russell G. Pav in 2015. In his thesis, he conducted an analysis to determine if the
means and variances of MOEs of interest were statistically different by experimental
design (Pav, 2015). To do that, he ran R5FF and NOLH experimental designs of
experiment on his MANA simulation. Pav observed that the differences among the mean
and standard deviations of MOESs were not practically significant. However, the terms in
metamodels he built were not identical. In this study, we will examine if his findings

remain true using a different scenario.

In summary, these designs allow the analyst to simultaneously fit complicated
metamodels to the influential factors while exploring many variables for significance
(Sanchez, S. M; Lucas; Sanchez, P. J.; Nannini; & Wan, 2012). As a result of this

process, intelligent experimental design and the use of statistical metamodeling not only
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reduce the simulation runs required to obtain useful output, but also enable us to analyze

broad ranges of many factors.

B. ENGAGEMENT LEVEL MODELING TOOL: MANA

MANA (Map Aware Non-Uniform Automata) is an agent-based modeling
environment that was developed at New Zealand Defense Technology Agency (DTA).
MANA has been used in military operations analysis (OA) studies by many organizations
around the world (Mclntosh, 2009). This stochastic agent-based environment uses
discrete time steps. In MANA, an abstraction of an engagement-level scenario can
include key physical and behavioral attributes of the military entities modeled. The
MANA developers strove to minimize the unnecessary detailed physical features of the
military assets being modeled.

MANA has a well-developed and intuitive user interface. The “Edit Squad
Properties” window in MANA includes several windows, including: General, Map,
Personalities, Tangibles, Sensors, Weapons, Intra Sqd SA, Inter Sqd SA, and Advanced.
All of these windows allow the user to enter detailed characteristics of the battlefield and
military assets being modeled. For instance, Figure 5 is the “Personalities” window,
through which users can define the behaviors of the military assets when they interact
with other entities, such as enemy, friend, neutral, etc. For example, if a positive number
is selected for any enemy scroll bar, it means that the agent will tend to go towards a
detected enemy. If the value is negative, the agent will try to move away from an enemy.
The magnitude of the value determines how strong this desire is. MANA uses heuristics
to weigh the multiple goals of an agent in deciding where to move, who to shoot at, etc.
These input characteristics allow the user to control agents’ behaviors in missions by
giving them values that determine how they behave and interact with other agents and the
environment. Additionally, target prioritization, search patterns, rules of engagement,
etc., can be determined by assigning input values according to their importance for the

mission.
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Figure 5.

MANA Personalities Window

Figure 6 is a screen shot of the “Sensors” window that allows the user to enter

sensor ranges and probabilities for different sensor types, e.g., radars. Also, there are

detailed settings, such as detect, classify, and target classes if the advanced mode is

selected. The “Tangible” input includes the settings of agents’ physical attributes, such as

maximum speed or armor thickness.
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Figure 6.

MANA Sensors Window

The column on the far right of the window is called “Trigger States.” It allows the

user to change the behavior of military assets in different states, such as “Reach

Waypoint,” “Enemy Contact,” “Squad Death,” “Ammo Out,” etc. This allows the agents

to change their physical and/or behavior properties according to user defined events, or

“triggers.” When one of the trigger state events occurs, a military asset gets new settings

and behaviors, as defined by the user. For example, when an Ammo Out condition is

triggered, an agent may decide to end his mission and return home.

MANA was selected as our engagement-level simulation for this study because of

its utility and ease of use. Moreover, MANA has been extensively used at NPS (see:

http://harvest.nps.edu), and additionally, is readily “data farmable”-which means that

software exists to run it in parallel over many processors.
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MANA provides many options for entering the physical characteristics of military
assets, such as sensor capabilities, weapon effectiveness, speed, and fuel capacity—as
well as editing battlefield features such as size, terrain type, elevation, etc. The ability to
specify the characteristics of military assets, such as fighter aircraft, AWACSs, and missile
systems makes MANA the ideal stochastic simulation software for this study. However,
some of MANA'’s limitations affected the veracity of our air-to-air mission-level combat
model. These include not being able to readily change the probability of hit of a missile
for different enemy aircraft speeds and headings. Therefore, the scenario we implement is
abstracted from reality. Of course, more complicated mission-level models, such as
BRAWLER, are more realistic; however, they are too cumbersome to work with in the

time frame of this research.

C. SAMPLING METHODS TO GENERATE INPUTS FOR HIGHER LEVEL
MODEL

In our demonstration of hierarchical combat modeling, we use several sampling
methods to obtain data from the output data library of the engagement-level model. We

briefly discuss those in this section.

1. Using the Overall Sample Mean

A sample mean (average) is a statistic computed from a collection of data and it is
the most commonly used estimator of a population mean. Suppose that there are n
number of random variables in a sample and X1, Xo, ....,Xn are identically distributed
random variables or observations such that they have a finite population mean x and a
finite population variance ¢°. The sample mean ()?(n))and sample variance (S2), shown in
Equations (2.1) and (2.2), respectively, are typically used to estimate x and o2 (Wackerly,
Mendenhall, & Scheaffer, 2007).

X(n) — Zi=14i (2.1)

= 2
Ezn=1[Xi—X(n)]
n-1

Often, only the sample mean, and not the variance, is fed forward as a single point

S = (2.2)

estimate to a higher-level model. But of course, doing so suppresses much information
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about the distribution of outcomes, such as the output measure’s range, modality, and

skewness.

2. Random Sampling

Random sampling can be accomplished in many ways, for example each data
point being equally weighted or not, or sampling “with” or “without replacement.” In our
application, each member of the population (or data point in the data library) has an equal
probability of being chosen. Also, we perform our sampling without replacement.
Therefore, once a data point is chosen, it is not chosen again for that particular round of
sampling. Additionally, each “subject” (data point) is chosen independently from the
other elements of the population data. That is, choosing one data point for use does not
make it any more or less likely for any other member of the population to be chosen.

D. CAMPAIGN LEVEL MODELING TOOLS
1. Lanchester’s Laws

As briefly mentioned in the first chapter, Frederick Lanchester developed paired
differential equations for modeling the attrition in combat (with an eye towards aerial
combat) during World War | (Lanchester, 1916). His square law equation models losses
over time as a function of the sizes of the forces and the rates of attrition inflicted by an
individual unit. Lanchester postulated that this modeled “modern combat” and this
variant is often applied to aimed fire situations. Lanchester argued that his other model,
the linear law, characterized “ancient combat” contextually, he envisioned this as a series
of one-on-one duels with a constant loss exchange ratio. There is also an area fire

interpretation to the linear law.

The square law models an aimed fire campaign of two forces. Red forces fight
Blue forces, and equations 2.3 and 2.4 define Red’s instantaneous loss-rate as being
proportional to Blue numbers and vice versa. The Red force size is denoted by x and the
Blue force size is denoted by y, while a is the attrition coefficient of Blue (i.e., the rate at

which one Blue attrits Red) and b is the attrition coefficient of Red.

dx _ _
- =~y (2.3)
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dy _ _
= —bx (2.4)

The linear law model represents a series of independent one-on-one duels, as with
ancient swordsmen, or an area fire battle. The losses of each force are proportional to
both the number of attackers (other side’s force size) and the number of targets (their own

force size). Linear law instantaneous loss-rates are shown in equations 2.5 and 2.6.

dx

o Taxy (2.5)
v__

i bxy (2.6)

In the research that this thesis builds upon, Pav chose to implement a square law
in the campaign-level model of his model hierarchy. In contrast, in this study, the
campaign-level air combat model implements a stochastic extension of Lanchester’s
linear law. The decision of which Lanchester law should be used was made based on the
aforementioned research of three academicians at the University of York, which indicated

that the linear law is more appropriate.

In order to calculate the attrition coefficients for each side, we use equations 2.7
and 2.8.

x casualties

2.7)

- (time)-(one x participant)-(one y participant)

_ y casualties
- (time)-(one x participant)-(one y participant)

(2.8)

In addition to the force sizes and attrition coefficients, the stochastic model has an
uncertain time element. The time that passes until the next casualty comes from an
exponential distribution with rate A (Washburn and Kress, 2009). In a stochastic
Lanchester linear model, this rate for each force is calculated by multiplying the force
size of Red (x) and Blue (y) by the related force’s attrition coefficient (a or b), which is

shown in equations 2.9 and 2.10.
Arep = axy (2.9)

AgLue = bxy (2.10)
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Since the time to the next casualty is assumed that the minimum of two
independent exponential distributions, the expected time to the next casualty can be
calculated using equation 2.11. In our model, we calculate the time until the next casualty
based on a random draw from an exponential distribution. The probability that the next
casualty suffered will be a Red is determined with equation 2.12. We note that,

unconventionally, we choose Red to be “our” side, the “good” side.

1

ElTxyl = ARED*+ABLUE (211)
_ ___*RrED
PIX|x,y] = —"— (2.12)

Employing the equations given in this section, an air campaign between Red and
Blue, implementing the stochastic extension of Lanchester’s linear law model, is

instantiated using the programing language PYTHON 2.7.

2. Python 2.7

The programming language Python, version 2.7, was used to implement the
aforementioned stochastic Lanchester linear law campaign model. Python 2.7 is an open
source language that includes many analytical packages and tools that vary according to
the purpose of the user. It can be freely downloaded from the http://www.python.org.
Python 2.7 is a powerful, versatile, general-purpose and dynamic open-source coding
language that provides a wide range of available functions and packages. Also, the author
utilizes experience in coding in the IPython Notebook, which is an interactive
computational platform of Python, where the programmer can read/write data easily, run
the code interactively block by block, and add text, plots, etc., as desired. Python is

deemed by many to be easy to read, write, and understand.

E. ANALYSIS TOOLS
1. Metamodeling

Understanding the relationship between input factors and the outputs of a model is
essential in simulation modeling. One way to quantify the relationship is through a
metamodel. A metamodel is a “model of a model.” For example, a relatively simple
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regression equation may be used to approximate the relationship between the inputs and
outputs of a complex simulation. Meta-modeling provides the analyst with a surrogate
model that is much more intuitive and fast-running than the original underlying model or
dataset. Used properly, in some situations, metamodels can prevent an analyst from
having to run time-consuming simulations. Various types of metamodels are used in
simulation analysis, including regression equations, partition trees, and Gaussian process
models (Barton, 1998).

2. JMP

JMP Pro 12 is used as the statistical analysis tool for this study. It is a computer
program created for data visualization and statistics, developed by a unit of the SAS
Institute. JMP is widely used by analysts in the applications of design of experiments and
scientific research. JMP allows users to interactively manipulate and investigate their data
without writing code. In addition to easy data visualization, this program allows the user
to utilize many powerful visual and statistical tools, such dynamically-linked plots and
graphs, histograms and summary statistics, regression models, partition trees, and many

others. More information about JMP can be obtained at http://www.jmp.com/.

3. Distributed High Performance Computing (HPC)

In order to execute the designs of experiment used in this study, we utilized the
high-performance computing cluster, consisting of 160 processors, owned and
maintained by the Simulation Experiments and Efficient Designs (SEED) Center of the
Operations Research Department at the Naval Postgraduate School. The cluster has
software installed that automatically generates and manages the running of individual
design points of an experimental design. Additionally, post-processing software has been
written to manage the collection and summarization of individual simulation run outputs

into one file convenient for analysis.
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I11. SCENARIO AND MODEL DESCRIPTION

In this chapter we describe the scenarios that were employed in our study of
hierarchal combat modeling, including the limitations and capabilities of the software
programs used in the modeling. The scenarios give context to the models developed. In
the last part of this chapter, our high-resolution and low-resolution models are explained

and illustrated with diagrams.

A. SCENARIO DEVELOPMENT PROCESS

In this study, one country, herein referred as Red, has a potential future air
campaign against a fictional enemy country, herein referred to as Blue. Recall that Red is
“our” side. Red is a Western country and her Air Force uses Western Bloc-type aircraft,
radars, and weapon systems; whereas Blue’s Air Force uses Eastern Bloc equipment. In
more detail, Red has fighter aircraft FX, airborne warning and control system aircraft
AWACS, and Blue has fighter aircraft MY and a stationary radar system. Red FXs carry
advanced medium-range air-to-air radar guided missiles, which we will call X-MRGM.
On the other hand, Blue MYs carry Y-MRGM missiles, which have similar features to X-

MRGM and are made by an Eastern Bloc country.

Due to the fact that the main purpose of this research is to analyze the propagation
of error within hierarchal air combat models, a basic scenario was generated. In our
experimental study, our context is that Red is considering investments in air combat
technologies, such as aircraft, radars, and weapon systems. The simplicity of the given
scenario and the models generated will hopefully allow us to focus on error propagation

and facilitate other analysts in using the models of this study in future studies.

B. CONTEXT FOR THE SCENARIO

A Red reconnaissance jet FX was intercepted and shot down by a country Blue’s
surface to air missile (SAM) in international airspace. Two Red jet pilots were killed. The
incident was a part of a series of incidents between Red and Blue since the beginning of
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Blue’s independence war, and this incident escalated the tensions between the two

countries.

After the Red jet was shot down, Red adopted new rules of engagement. In the
following days, Red’s Air Force shot down one MY and one Blue drone after they
violated Red’s airspace. Blue’s Air Force then procured 100 new MY fighter aircraft

from country yellow. MY has similar features to Red’s FX aircraft.

A couple of months later, two Red FXs take off from an air based located in the
south east of the country. The Red FXs are executing a combat air patrol (CAP) close to
the border with Blue when one of Blue’s SAM launchers fires a missile targeting Red
FXs. The FXs dropped flares and manage to get rid of the incoming SAM missile.
Afterwards, to prevent further missile attacks, the Red government decides to retaliate
with an effective air strike on the SAM missile launcher located in the northwest part of
Blue. Therefore, the Red Air Force prepares an air-to-ground attack plan. Based on their
intelligence, Red headquarters learns that the Blue Air Force will defend the SAM missile

launcher with a new MY squadron located very close to the launcher.

In order to attack the SAM launcher, Red’s Air Force forms an air strike package,
including bomber aircraft, 25 FX fighter jets (for possible air-to-air engagements), one
AWACS (for pre-raid and post-raid reconnaissance) and one tanker aircraft (to extend the
mission radius). The FXs are equipped with air-to-air missiles X-MRGMs, and will fly to
the operation area. On the other hand, Blue has weaker intelligence that there may be a
Red air raid. Therefore, he has 25 MY aircrafts on scramble mode in the closest base to
its border with Red. Those MYs are loaded with Y-MRGM missiles.

The Red AWACs has a 360° view of the horizon. Blue’s stationary radar can see
if any Red aircraft flies towards Blue. Both radars can simultaneously detect and track

multiple air targets.

Like every other simulation model, the model created for this study cannot
capture all real-world conditions, behaviors, and characteristics of military assets. Some
of the more important limitations, constraints, and assumptions are discussed in the

following paragraphs. Based on our contextual scenario, to see the engagement
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performance of FX and MX, an engagement-level model was generated in MANA. In the
engagement-level model, two versus two air-to-air engagements are simulated in order to
generate a data library for the campaign model. Later, using outputs of the MANA
model, attrition coefficients for each aircraft type are calculated. These attrition
coefficients are then used in a stochastic linear Lanchester model as a campaign-level
model with 100 Red aircraft versus 100 Blue aircraft engaging each other over four time

periods.

C. LIMITATIONS AND ASSUMPTIONS

First, accessing real performance characteristics of military assets, such as radar
capabilities and missile ranges, is impossible without making this research classified.
Since our focus is on error propagation, actual data is not needed. Therefore, IHS JANE’s
web (http://www.janes.com/) database is used to generate plausible and reasonable
aircraft, radar, and missile performance characteristics. Again, the focus here is on the
methodology not on specific weapon systems, and keeping the study unclassified, so
other researchers will be able to use this paper in their future studies.

In addition to using unclassified performance characteristics, the constraints of
MANA resulted in a simpler and less detailed scenario than could have been constructed

with a higher resolution model.

Q) Assumptions and Limitations for the Engagement-Level MANA Model

1. Before making the decision of how many aircrafts to include in our high-
resolution MANA model, discussions with three fighter aircraft pilots and
open Internet research about air combat operations were undertaken by the
author. Both the discussions and air combat history showed that fighter
aircraft do not fly alone. Therefore, instead of one-on-one engagements,
two-versus-two aircraft battles were selected for the MANA model.

2. One of the major factors that impact the probability of hit and effective
range of an air-to-air missile is the geometry (i.e., routes and directions) of
the engaging aircraft. A missile reaches its maximum effective range if a
head-to-head engagement occurs, other than that; the effective maximum
range significantly decreases. The probability of hit and the effective
range of a missile are not readily modeled in MANA as a function of the
aircrafts’ orientations and kinematics.
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In MANA, the agents cannot explicitly exercise fire control over wire-
guided munitions (Pav, 2015) and missile flying time is neglected.
Therefore, guided weapons, such as a missile, were modeled as a bullet
that has probability of hit that varies according to range, but not aspect or
heading.

Each aircraft is assumed to have unlimited air fueling and missiles.

The aircraft of each force carry one type of missile, but differ according to
the force type. This holds for the radars as well.

Tactical deployment of aircrafts is minimal since air combat tactical
formations are difficult to model in MANA.

Assumptions and Limitations for the Campaign-Level Model

It is assumed that modern aircraft can engage more than one aircraft.

Varying Red and Blue force sizes while also varying engineering factors
would increase the amount of work and analysis, since it would add two
more dimensions to our model inputs and consequently to our data library.
Thus, we keep each side with a fixed number of aircraft (100).

The history of air combat operations shows that air operations can be
executed more than once a day or once in more than a day. For instance,
the Falkland war between Argentina and the United Kingdom over two
British overseas territories took ten weeks—with many days not involving
air battles (Chant, C., 2001). On the other hand, air operation time periods
can be executed sequentially in a day, like in surge operations early in the
Irag War by the U.S. Forces (Pape, 2004). Additionally, a discussion about
air combat operations with Tom Lucas and Wayne P. Hughes was made
by the author before making the decision of what time element to use in
attrition coefficient calculations (T.W. Lucas & W.P. Hughes, personal
communication, March 10, 2016). Based on historical experience and the
discussions, to calculate attrition coefficients, a single air operation time is
used as a period—with four periods modeled.

All forces are homogenous.

Neither force fights to the death. Each side has a breakpoint (tolerance for
loss), beyond which they choose to terminate battle for that time period or
campaign.

Precise tactical deployments are not used.

Only force size and attrition coefficients are provided numerically to
predict the outcome and number of casualties of each side at the end of the
campaign.
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D. HIERARCHICAL MODELS OF APPLICABLE SCENARIO

Based on the applicable scenario, modeling and sampling tools were employed to
generate a hierarchal air combat analysis including a high-resolution (engagement-level
MANA model) and a low-resolution (campaign-level stochastic Lanchester linear model)

model. The models that were used in this study are depicted in Figure 7 as a hierarchy

pyramid.

Generating a library of data
usingthe MANA model to
calculateaand b

ENTITY LEVEL

....... —

MAMNA
Model .

2ws?

Figure 7. Hierarchical Air Combat Models of This Study
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The two models shown in Figure 7 constitute the hierarchal air combat model
family we will experiment with. The measures of effectiveness (MOEs) of the
engagement-level model are used to generate measures of performance (MOPS) input for
the campaign-level model by utilizing various sampling methods. The MOEs and MOPs

for each level model are shown in Table 1.

Table 1. MOPs and MOEs of Each Model Level.

MODEL LEVEL /MODEL TOOL MOPs MOEs
- AIRCRAFT PERFORMANCE - WINNER(THE SIDE WITH FEWER
ENGAGEMENT MANA CHARACTERISTICS CASUALTIES)
GENERATED FROM NOLH AND RSFF DOEs. - # of LOSSES
STOCHASTIC - FORCE SIZE (CONSTANT AND GIVEN) P(Win]
CAMPAIGN LANCHESTER | - ATTRITION COEFFICIENTS CALCULATED o Lc;;5E5
LINEAR MODEL | FROM MANA MODEL'S # OF CASUALTIES

Table 1 briefly shows the relationship between the MOEs of the engagement-level
model and the MOPs of the campaign-level model. Since performance characteristics are
varied by utilizing DOE, effects of those changes on campaign MOEs will be analyzed.
The probability of winning is denoted as P(Win). This provides the ultimate measure of
success, while the expected number of casualties in victories quantifies some of the

uncertainty of campaign outcomes that creates risk for decision makers.

1) High Resolution — Engagement-Level Model

As previously mentioned, the engagement-level model of a two versus two air
engagement is developed in MANA. The simulated battlefield is 480 by 500 miles. Two
Red fighter jets and one Red AWACs take off from the southern part of the Red country
in order to escort Red bombing jets whose goal to bomb a SAM launcher in the western
part of the Blue country. If any Red fighter survives at the end of an engagement, it
returns to base. Red fighters have 100% reliable communication with the AWACS and
the AWACS provides improved radar support to detect enemy aircraft and transfer
enemy aircraft coordinates to the Red jets. The AWACS and fighter jets fly with the same
speed of 400 kilometers per hour; however, the AWACS flies at a very high altitude,
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which allows him to stay away from any engagement with hostile aircraft. After the Red
AWACS detects enemy aircrafts, the Red fighters’ speed increases from 400 kilometers
per hour to 800 kilometers per hour to engage enemy combatants as soon as possible. On
the other hand, Blue fighter pilots are waiting on the ground for scrambling. After the
stationary radar located in northern side of Blue country detects enemy aircraft and sends
information about them, two blue pilots will quickly get into their fighters and move to
intercept the intruders with a speed of 800 kilometers per hour. Each two-vs-two
engagement starts with the take-off of the Red fighters and ends with the landing of the
last surviving aircraft after shooting down the both fighters of other side. The length of
engagement was selected based on the discussion with Lucas and Hughes ( T.W. Lucas &
W.P. Hughes, personal communication, March 10, 2016). See Figure 8 for an annotated
MANA screen shot of the model.
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Figure 8.  High Resolution Engagement-Level MANA Model

2 Low Resolution — Campaign Level Model

As previously mentioned, this thesis employs a stochastic Lanchester linear model

as the campaign model. In our campaign model, Red has 100 aircraft and Blue has 100
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aircraft. Since this study’s goal is to analyze error propagation within hierarchal air

combat models, to keep the campaign model simple, the campaign consists of four time

periods that include the following features. Red performs 4 air operations including 25

fighters each time and blue counterpoises these air operations with same number of

fighters. The main features of the campaign model are presented below.

For each of the four time periods, 25 Red will fight 25 Blue.

Each side will have a break point (tolerable loss) of six remaining aircraft,
just under a quarter of the operation’s force size. If a break point is
reached, that side will disengage and that time period’s battle will end.

At the end of the four time periods, the winner is the side with fewer
casualties. There is no tie situation.

Length of each operation are time between operations are neglected since
we are interested in P(Win) and number of casualties.

The data generated from each run includes: Red casualties, Blue
casualties, and the winner of the campaign.

The campaign model of this study is written by the writer as a code in Python 2.7

notebook platform, where the code is presented in appendix section of this paper.
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IV. DATA-FARMING, MODEL RUNS, AND ANALYSIS

This thesis examines methods for linking a campaign model’s inputs to an
engagement model’s outputs. Therefore, one of our goals is to make recommendations
about how to quantify the uncertainty within campaign model output, given variability in
the inputs, which will allow analysts to assess risk to the commander more
comprehensively. Two models that together form our hierarchy of models, a two-vs-two
engagement level model and a campaign level stochastic Lanchester model are developed

and employed.

The overall work flow of our analysis is shown in Figure 9. In steps 1A through
1E, we use two different experimental designs, described in the next section, to perform
an experiment on the MANA model. Each MANA replication starts with the take-off of
the Red fighters and ends with the landing of the last surviving aircraft after shooting
down the both fighters of other side. We then analyze both the full and summarized data.
In the summarized data set, we summarize each Design Point (DP) by its mean and
standard deviation, over the stochastic replications. The full and summarized data from
our MANA experiments form what we will call the MANA library of data. In step 1F, we
calculate estimates of a and b (inputs to the Lanchester model) for each run of both
NOLH and R5FF data libraries. Additionally, a column called “Win?” is calculated—and
the assigned value is O if our side, the “Red” side lost and 1 if our side won. We remind
the reader that in our model we take an unconventional approach in deciding “Red” to be
the “good guys.” The side with fewer casualties is the winner in MANA model. In the
summarized data, mean(Win?) is renamed P(Win), our estimate for the probability of
winning. In step 1G, using the summarized data, we fit stepwise regression models for a,
b, and P(Win), as a function of the experiment variables. We then compare the NOLH

and R5FF results, including the metamodels generated.

In steps 2A through 2C we explore different methods, which we explain in detail
in this chapter, to translate the MANA results into inputs needed for the campaign model.
Step 2C involves simulating the “direct linking” of the campaign model’s inputs to the

engagement-level model’s outputs.
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In step 2D.1, we perform a design of experiment directly on the stochastic
Lanchester model, varying a and b over ranges informed by the MANA library of data. In

step 2D.2, we fit a regression model for P(Win) as a function of a and b.

In step 2D.3, a composite (embedded) metamodel of P(Win) is constructed. We
explain the composite (embedded) metamodel in detail in the further part of this chapter.
from step 2D.2, we obtain P(Win) as a function of a and b. And, from step 1G, we obtain
a and b as functions of the experiment variables. So, in this step, we simply substitute
a=f(experiment variables) and b=f(experiment variables) into P(Win)=f(a,b), obtaining a
composite, embedded metamodel P(Win)=f(experiment variables).

In step 3, we compare the composite metamodel approach to the result of 2C,
directly linking the Engagement and Campaign Model. And in step 4, we compare the

campaign metrics based on the different sampling methods. The next section will

describe each of these steps in more detail.
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A ENGAGEMENT-LEVEL MODEL PROCESS
1. Data Farming (Blocks 1B, 1C of Work Flow Diagram)

The performance characteristics of the aircraft in the model are notional. In the
real world, these characteristics would vary depending on enemy counter-measures,
aircraft orientation, radar and missile capabilities, operator training, and other aspects of
air-to-air combat. In order to explore the impact of aircraft characteristics on performance
in the MANA model, we conduct a designed experiment. Data farming is our metaphor
for iterated design and analysis of experiments. We use two different experimental
designs, so that we may compare and contrast the results. The two designs utilized are the
Nearly Orthogonal Latin Hypercube (NOLH) and the Resolution V Fractional Factorial
(R5FF). Both of these techniques are relatively efficient, with respect to the number of
design points required, as compared to a full-factorial design which tests all possible
combinations. One key difference between the two is that the NOLH is a space-filling
design that allows flexibility in the analysis (for example, higher order terms can be
estimated in a regression model) while the R5FF tests each factor at only two levels (low
and high). Therefore, an advantage of the R5FF is that it tests the more extreme “corner
points” but does not allow for capturing curvature in the response surface, via estimation
of quadratic or higher terms. By employing both experimental design methods,
performance characteristics of Red and Blue aircraft were varied around open source
(HIS Jane’s data library) base case values. A total of ten variables were varied, and these

are shown in Table 2.

Another advantage of the NOLH design is that it can be easily developed using a
spreadsheet freely available from the SEED Center for Data Farming’s website
(http://harvest.nps.edu). Analysts have several catalogued designs in the spreadsheet to
choose from. The catalogued designs have different numbers of design points (DPs)
according to the number of factors desired in the experiment.
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Table 2.  Red and Blue Aircraft Design Factors in DOE for MANA Model.
RED FIGHTER AIRCRAFT
WEAPON EFFECTIVE Maximum e!'fectwa r;inge trhat ..a red fighter airc'rafl mlslsﬂe hits ED,U'U‘D SD,DDD
RANGE an enemy aircraft. It is varied since an enemy aircraft will have
different directions . maneuvours, etc. meters meters.
{AC-EffRng)
RED AIRCRAFT WEAPON | Probabifity that a missile fired from a red fighter aircraft hits an
PROBABILITY OF HIT enemy aircraft. It is varied since enemy aircraft will have 0.8 0.9
counter maneuvers, flares and missile has its own probability of 3 5
{AC-EffRng-Phit) hit.
RED AWACS RADAR -
RANGE Maxulnum rarkge_ ﬂ'Eat? red AWACS can detect an enemy fighter 320}000 400'000
aircraft. Wariation is generated based on enemy counter
i iliti meters meters
{AWACS-Rng) measures and radar detection capabilities.
RED AWACS PROBABILITY Probability that red AWACS classifies commectly an enemy
OF CLASSIFICATION aircraft after AWACS detects that enemy aircraft by its radar. 0.8 1
is varied since enemy will have counter measures such as 2
[AWACS-Pclass) jammer system etc.
CDMEE}[;J@'I‘EDN Organic communication between red aerial assets may have
small amount of time delay in transfering information to each 0 second 2 zseconds
(CommLat) other after radar detecting an enemy aircraft in radar.
RED AIRCRAFT Red fighter aircraft stealth is the amount of protection from
STEALTH view that the entity has, and ranges fron 0 to 100%, where 0% 30%
100% is invisible It is partial and varied based on the idea that
ACStealth new fighters have partial stealth capabilites.
BLUE AIRCRAFT WEAPON e ¢ S
EEEECTIVE RANGE [\.l'ra.xtr.num‘ra nge that a h[u!a ﬁghter‘a[rcraﬂ can fire a lmISS-I.TE. It 50,["] 0 Sﬂ‘,ﬂﬂﬂ
is varied since an enemy dircraft will have different directions ,
meters meters
(EnAC.EffRng) Maneuvers, etc.
BLUE AIRCRAFT WEAPON | Probability that a missile fired from a red fighter aircraft hits an
PROBABILITY OF HIT enemy aircraft. It is varied since enemy aircraft will have 0.8 0.9
counter maneuvers, flares and missile has its own probability of d :
(EnAC-EffRng-Phit} hit.
BLUE STATIONARY RADAR - .
RANGE Maximum range.lhat a E[L[E‘! sEatquranf radar can detect an 220,000 230,0["]
enemy fighter aircraft. Variation was genereted based on
i il meters meters
(EnRadarRng) enemy counter measures and radar detection capabilities.
e EP?;;A{;TL?F: (?FA oot Probability that Blue stationary radar classifies correctly an
C S FICATION enemy aircarft after radar detects that enemy aircraft by its 0.8 1
radar. It is varied since enemy will have counter measures such H
J etc.
[EnRadar-Pelass) e e el ek

Although 65 design points would have been sufficient for our 10 factors, we
chose the next larger catalogued design, the one containing 129 design points, in order to
fill more of the space, and also to have a number of design points close to the number of

design points in the R5FF. The number of DPs required for a R5FF for 10 variables is
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128. An advantage of having similar numbers of DPs for the two designs is so that
statistical power (the ability to detect a statistically significant effect, if one is present)
should be roughly equal (for main effect models—with an advantage to the optimal
R5FF). This is advantageous so that the metamodels created from each design’s output

are more directly comparable.

2. Design Point Analysis

In order to generate a scatter plot of the experiment factors and generate a matrix
of pairwise correlations to analyze design points, we conduct a multivariate analysis in
JMP. The results, for the NOLH design and the R5FF designs, are shown in Figure 10

and Figure 11, respectively.
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Figure 10. Multivariate Analysis of NOLH Design Points

Figure 10 illustrates the space-filling aspect of the NOLH design, which allows us
to explore the interior of the experimental region as well as remain fairly flexible with
our analysis goals. As previously mentioned, with the output produced from the NOLH
design, we can estimate higher order terms in regression models, such as quadratic

effects. We see from the correlation matrix that all pairwise correlations between
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variables are below the +/- 0.03 threshold which satisfy the near-orthogonality constraint
(Cioppa & Lucas, 2007).

= Engagement Model R5EF Output Appended Summary - Multivarlate Analysis
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Figure 11. Multivariate Analysis of R5FF Design Points

In Figure 11, it is apparent that the R5FF design samples only at the corners of the

input design space and also that all pairwise correlations between factors are equal to 0.
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With the R5FF, all two-way interaction terms in regression models can be estimated;
however, quadratic effects cannot be estimated because each factor is sampled at only

two levels.

3. Engagement Model Runs and Output Analysis (Blocks 1D, 1E of
Work Flow Diagram)

For both the NOLH and R5FF experiments, each DP was replicated 1,000 times
in MANA. Thus, the NOLH experiment consisted of 129,000 runs while the R5FF
experiment consisted of 128,000 runs. As mentioned before, these runs were generated in
order to provide a library of data to use as input to the campaign model. In order to
conduct data analysis and build metamodels, we use the JMP statistical software.

a. Raw Data Analysis

We start by generating histograms and summary statistics for Blue Casualties, Red
Casualties, and Length of Engagement based on the NOLH and R5FF raw (full output) data
libraries. The NOLH results are displayed in Figure 12 and the R5FF results are displayed in
Figure 13.
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Engagement Model NOLH Raw Data Distributions

Blue Casualties Red Casualties Length of Engagement

o 1 H 3 0 1 2 3 3300 3700 4100 4500 4900 5300 5700
4 Quantiles 4 Quantiles 4 Quantiles
100.0% maximum 2 100.0% maximum 2 100.0% maximum 5632
99.5% 2 99,5% 2 99.5% 5019
97.5% 2 97.5% 2 97.5% 4893
90.0% 2 90.0% 2 090.0% 4079
75.0% quartile 2 75.0% quartile 2 75.0% quartile 4007
50.0% median 1 50.0% median 2 50.0% median 3892
25.0%  quartile 0 25.0% quartile 0 25.0% quartile 3780
10.0% 0 10.0% 0 10.0% 3712
2.5% 0 2.5% 0 2.5% 3648
0.5% 0 0.5% 0 0.5% 3589
0.0%  minimum 0 0.0%  minimum 0 0.0%  minimum 3400
4 ~]Summary Statistics 4 (¥ Summary Statistics 4 (xISummary Statistics

Mean 1.1935736 Mean 1.2727364 Mean 3929.6673
Std Dev 0.8389084 Std Dev 0.8473047 Std Dev 254.60453
Std Err Mean 0.0023357 Std Err Mean 0.0023593 Std Err Mean 0.7088776
Upper 95% Mean 1.1981516 Upper 95% Mean 1.2773607 Upper 95% Mean 3931.0567
Lower 95% Mean 1.1889957 Lower 95% Mean 1.2681122 Lower 95% Mean 39282779

N 129000 N 129000 N 129000

Figure 12. Engagement Model NOLH Raw Output Distributions

The results in Figure 12 show that the mean of Red casualties is larger than the
mean of Blue casualties, and that they have very similar standard deviations. We also
note that most of the runs end with two casualties for one of the sides, as expected. We
also see that the “Length of Engagement” distribution is bimodal. The bimodality is
because the higher-valued mode is associated with Red winning and the lower-valued
mode is associated with Blue winning. This result is due to the fact that the distance
between the Red air base and approximate engagement area is larger than the distance
from the Blue air base to the same engagement area. Therefore, if Red wins, it takes more
time for them to return their base, and it was decided that this time should be factored

into the inputs for the campaign model.
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Engagement Model R5FF Raw Data Distributions

Blue Casualties Red Casualties Length of Engagement

4600 5200 5800

4000

0 1 2 3 o 1 B 3 3400
4 Quantiles 4 Quantiles 4 Quantiles
100035 maximum 2 100.0% maximum 2 100.0% maximum 5707
99,5% 2 99.5% 2 99.5% 5344
97.5% 2 97.5% 2 97.5% 5077
90.0% 2 90.0% 2 90.0% 48869
75.0%  quartile 2 75.0%  quartile 2 75.0%  quartile 4080
50.0% median 2 50.0% median 1 50.0% median 3907
25.0% quartile 1 25.0% quartile 0 25.0%  quartile 3792
10.0% 0 10.0% 0 10.0% 3666
2.5% 0 2.5% 0 2.5% 3591
0.5% 0 0.5% 0 0.5% 3522
0.03%  minimum 0 0.0%  minimum 0 0.0%  minimum 3290
4 (¥|Summary Statistics 4 [¥)Summary Statistics 4 [~)Summary Statistics

Mean 1.2932031 Mean 1.1459297 Mean 40426027
Std Dev 0.8350035 Std Dev 0.8695991 Std Dev 426.07148
Std Err Mean 0.0023342 Std Err Mean 0.0024306 Std Err Mean 1.190906
Upper95% Mean  1.297778 Upper 95% Mean 1.1506936 Upper 95% Mean 40449369
Lower 95% Mean 1.2886282 Lower 955 Mean 1.1411657 Lower 95% Mean 4040.2686

M 128000 M 128000 N 128000

Figure 13. Engagement Model R5FF Raw Output Distributions

The R5FF data histograms and summary statistics share similar features as the
NOLH raw data. However, in this case, there are, on average, more Blue casualties than
Red casualties. The reason for the different result is likely due to the fact that the R5FF

samples only at the more extreme “corner” points.

b. Summarized Data Analysis

We next summarized the raw (full) output data set by calculating the mean of Red
Casualties, mean of Blue Casualties, mean of Length of Engagement, and P(Win), over
the 1000 replications, for each DP. Therefore, N=129 for the summarized NOLH data
and N=128 for the summarized R5FF data. We display the results in Figures 14 and 15.
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Normal Quantile Plot
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By visual inspection, the histograms look like they do not stray far from

normality. However, in order to assess whether the underlying data is normally

distributed more accurately and effectively, we utilize JMP’s ability to generate a normal

quantile plot and conduct a goodness of fit test.

Normal Quantile Plot

Dist. Histogram

DISTRIBUTIONS OF ENGAGEMENT MODEL SUMMARIZED R5FF OUTPUT

Mean (Blue Casualties)
| =5§_'

1644
15a0.93

12 14 16 18

1

06 08

Mean (Red Casualties)

06 08 1 12 14 16 18

|=)Summary Statistics |
Mean 1.1459297
Std Dev 0.2876319
Std Err Mean 0.0254233

Upper 95% Mean 1.1962378
Lower 95% Mean 1.0956216
N 128

Figure 15.

[~)Summary Statistics

1.2932031
Std Dev 0.2764951
Std Err Mean 0.0244389
Upper 95% Mean 1.3415634
Lower 95% Mean 1.2448429
N 128

Mean

Mean (Length of Engagement)
N Wt s 5 ]

d
A 152
1 093

wrlyrs
o BRa

87403

128
aEro0s

235

e —-

0.0075

M0 W00 4100 4300 4500
| Summary Statistics

Mean 40426027
Std Dev 185.66114
Std Err Mean 16.410282

Upper 95% Mean 40750757
Lower 95% Mean 4010.1297
N 128

46

Mean(Red Wins) -> P(Win)

=i

184
124093

057

1224
18 M

233

02 03 04 05 06 07 08 09
|Summary Statistics

Mean 0.5382847
Std Dev 0.1670056
Std Err Mean 0.0147614

Upper 95% Mean 0.5674948
Lower 95% Mean 0.5090747
N 128

Distributions of Engagement Model Summarized R5FF Output



The normal quantile plot for each of the outputs appear in Figures 14 and 15.
Points falling far off the diagonal indicate that they are in a different location than would
be expected from a normal distribution (Wackerly, Mendenhall, & Scheaffer, 2007). It is
seen that most of the points in these normal quantile plots do fall close to the diagonal
lines. We next performed JMP’s Goodness of Fit test, which utilizes the Shapiro-Wilk W
test (Wackerly, Mendenhall, & Scheaffer, 2007). The null hypothesis for this goodness of
fit test is that the data were drawn from a normal population. Rejecting the null would
then indicate that we have evidence that the data do not come from a normal population.
We do not show here the results for the goodness of fit test, but note that, except for the
Length of Engagement distributions (for both data sets), all of the p-values were larger
than our chosen 0.05 level of significance, therefore, we do not reject the null hypothesis
that that these NOLH and R5FF summarized data are normally distributed. The lack of
normality for the Length of Engagement distributions is not surprising since we already
realized from visual inspection that the Length of Engagement distributions were

bimodal.

Finally, we compare the means of key metrics by design type (group), in order to

determine if there is a statistically significant difference between the two groups.

Analysis of Mean(Blue Casualties) by Design
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Figure 16. Analysis of Means (Blue Casualties) by Design
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Analysis of Mean (Red Casualties) by Design
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Figure 17. Analysis of Means (Red Casualties) by Design

Analysis of Mean (Length of Engagement) by Design
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Figure 18. Analysis of Means (Length of Engagement) by Design

In Figures 16, 17, and 18, it can obviously be seen that there are numerical

differences between the NOLH and R5FF output. These differences can be attributed to
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the space-filling aspect of the NOLH design and the corner-point sampling of the R5FF

design.

First, in order to compare the means of both data sets, we combined the summary
data of the NOLH and the R5FF into one dataset. Then, we employed the Welch Analysis
of Variance (ANOVA) test to determine if there was a statistically significant difference
between the means of the two groups of data. By visual inspection we were able to
determine that the variances of the two groups are not equal, which is the reason we
utilize the Welch test instead of the usual t-test that assumes equal variances. The Welch
statistic is based on the ANOVA F test. However, the means are weighted by the
reciprocal of the group mean variances (Welch, 1951; Brown & Forsythe, 1974; Asiribo,
Osebekwin, & Gurland, 1990). If there are only two levels, as is the case here, the Welch
ANOVA is equivalent to the unequal variance version of the t-test. The null hypothesis
for this test is that the means are equal. All of the resulting p-values are less than .05, so
we reject the null hypothesis that group means are equal. We note, though, that the larger
the number of design points (N), the greater the statistical power. And we must keep in
mind that the greater the power, the greater the chance that even small, practically

insignificant differences in the means are detected as statistically significant.

4. Linear Regression Analysis on Engagement Model Outputs (Block 1G
of Work flow Diagram)

We performed a stepwise linear regression analysis on both the NOLH and R5FF
MANA data sets. One goal was to better understand the experiment space by discovering
the most influential parameters, their key threshold values, and potential interactions
amongst them. This process also is useful for verification and validation of the model. In
order to explore the most effective factors on red side’s probability of win, we
constructed metamodels for P(Win) of both engagement and campaign models. Another
goal was to create metamodels for a, b, and engagement P(Win) , as functions of the Red
and Blue experiment variables. As mentioned before, the metamodels for a and b will be
plugged into campaign metamodel P(Win) = f(a,b), to yield a composite, embedded
metamodel for campaign P(Win) = f(experiment variables).
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a. Linear Regressions on the NOLH Data Library

First, attrition coefficients a and b are calculated from the number of casualties
and length of engagement statistics, using the formulas in equations 2.7 and 2.8 given in
Chapter 1. Recall that a represents the killing power of y (Blue) on x (Red = “good
guys”), and that b represents the killing power of x (Red) ony (Blue).

Stepwise linear regression models are fit to the estimates for a and b, to determine
which factors best predict them. To fit the models, we utilized JMP’s stepwise regression
capability, and utilized the default minimum Bayesian information criterion (BIC) to
determine when to stop adding terms to the regression model. We allowed all main
effects, quadratic effects, and two-way interaction terms to potentially enter the model.
Upon obtaining the final model, we utilize JMP’s features to assess the assumptions of
regression, namely that residuals are normally distributed with zero mean and constant

variance.

We start with the regression model for b, shown in Figure 19.
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Summary of Fit
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RSquare Adj 0.815107
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Figure 19.

We note that the RSquare value in Figure 19, is very high (0.919), which indicates
that the model explains over 91% of the observed variability in the data. The Actual by
Predicted plot additionally indicates that the model fits well. In the Sorted Parameter
Estimates, the statistically significant variables and the size/direction of their effects on

the response are shown. The Red aircraft’s missile effective range is the most influential
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driver of b, which confirms intuition. The Residual by Predicted plot indicates that the
assumption of zero mean and constant variance is reasonable, since there is roughly even
scatter above and below the zero line. Though we don’t display it here, we also
confirmed the normality of the residuals visually and through the goodness of fit test
mentioned previously. The Prediction Profiler in Figure 19 illustrates the marginal effect
of each predictor variable on the response, b. The absolute value of the slope of the line
indicates the magnitude of the effect and the sign of the slope (positive or negative)
indicates whether the effect has a positive or negative impact on the response as that
variable is increased. JMP also allows us to save the prediction formula for b, and it is

shown in Figure 20.

p = |0.00009339991368
+|6.4841118473e-11* AWACS-Rng
+|-0.0000078766007* Commblat
+|7.831284438e-10 * AC-EffRng
+|0.00000025587656 * ACStealth
+|-7.286605462e-10* EnAC-EffRng
+|-4.9313410182e-9 * EnAC-EffRng-Fhit

Figure 20. Prediction Formula for b Based on NOLH Data Library
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Summary of Fit

RSquare 0.92887

RSquare Adj 0.924861

Reot Mean Square Error 3.33beh

Mean of Response 0000083

Observations {or Sum Wts) 129

Sorted Parameter Estimates

Term Estimate
EndC-Efffing E.458=10
AC-EfiRng =8.2e-10
CommLat B.042 65
ACStealth 28187
EnAC-EffRng-Phit 5.2612=0
EnRadarfing 4.5e-11
(AC-Efffng-63000.1)*(AC-EffRng-05000.1)  -1.15e-14
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Analysis of Variance
Sum of

Source DF Squares Mean Square  F Ratio
Model T 1782118 2.5450.0 2260721
Error 121 13626229 1.126e-11 Prob>F
C.Total 128 151837e8 <.0001*
Std Error t Ratio Prob=|t]
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Regression Analysis of Blue Killing Power on Red (a) Based on

NOLH Data Library

Next we fit a linear model for Blue killing power on Red, a. The resulting output

is shown in Figure 21. Like the previous regression model, the RSquare value is also very

high (0.928). In the Sorted Parameter Estimates, we see that the Blue aircraft effective

range is most influential and has positive relationship with a, which confirms intuition.
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The Prediction Profiler shows that there is a non-linear (quadratic) relationship between
the Red aircraft effective range and the response, a. The diagnostic plots indicate that the
model is well-fitting and that the assumptions of regression are upheld. The prediction

formula for a is given in Figure 22.

¢ = |0.00002139730028
+(0.00000804262402 * Commlat

+(-8.200272952e-10* AC-Efffing
+[-2.818053675%e-7|* ACStealth
+(8.458263398e-10* EnAC-EffRing
+(5.261192657e-9% EnAC-EffRng-Fhit
+[4.899557241e-11* EnRadarRng

[lAC-Effng|- 65000.0620155039)
+ #[|AC-EffRng - 65000.0620155039]
#[-1.151705944e-14

Figure 22.  Prediction Formula for a Based on NOLH Data Library

Additionally, we fit a model for P(Win). As mentioned previously, P(Win) is the
probability that our side, Red, wins—that is, experiences few casualties than Blue. Figure
23 shows the regression analysis statistics and plots for the final P(Win) metamodel. Here
also, RSquare is high (0.926) and the model fits well. The most influential factors are the
effective ranges of the aircrafts, and we note that the t-ratio of Red aircraft’s effective

range is slightly larger than the t-ratio of Blue aircraft’s effective range.
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Summary of Fit | |Analysis of Variance

RSquare 0.926643 Sum of
RSquare Ad) 0.921753 Source DF Squares MeanSquare FRatio
Root Mean Square Error 0.031454 Model 8 14997449 0.1874658 189.4795
Mean of Response 0.467403 Error 120 0.1187262 0.00098% Prob> F
Observations [or Sum Wigts) 129 C. Total 128 1.6184710 <,0001*
Sorted Parameter Estimates !
Term Estimate Std Error tRatio Prob=|t]
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Figure 23. Regression Analysis of Engagement Model P(Win) Based on
NOLH Data Library

As with the other regressions, this model fits well and the assumptions of
regression are upheld. The direction and magnitude of the effects, illustrated in the
Prediction Profiler, make sense. For example, Red engineering factors such as AWACS

radar range, Red aircraft effective missile range, and Red aircraft stealth percentage all
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have a positive relationship with P(Win), whereas Blue engineering factors and the
communication latency of Red aircraft have a negative relationship with P(Win). It is also
seen that the effect of Red aircraft effective missile range on P(Win) is quadratic. The

prediction formula for P(Win) is given in Figure 24.

P (Win) = 0.8714884828115
+|0.00000031104138* AWACS-Rng

-0.0833238239368 * Commlat

+|0.00000759785425 * AC-EffRing

0.00238844817407 * ACStealth

-0.0000072704439 * EnAC-EffRng

+ |-0.0000466547205 * EnAC-EffRng-Phit

-0.0000004030273 * EnRadarRing

|| AC-EffRng - 65000.0620155039)

+ | AC-EffRng - $5000.0620155039
*1.0008899595e-10

+

+

+

+

Figure 24. Prediction Formula for Engagement Model P(Win) Based on
NOLH Data Library

b. Linear Regressions on the R5FF Data Library

The process of discovering metamodels, via stepwise regression, for a, b, and
P(Win) are repeated, this time using the R5FF data library. The result of the final model
for a is shown in Figure 25. The high RSquare value (0.982) indicates that our model fits
well and explains most of the variability in the data. The diagnostic plots also indicate
that assumptions are being upheld. The most influential driver of Blue’s attrition power
on Red (a) is the Blue aircraft’s missile effective range. Red aircraft’s missile effective

range is a close second.
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Summary of Fit | Analysis of Variance

RSquare 0.082079 Sum of

RSquare Adj 0.081681 Source DF Squares Mean Square  F Ratio
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Figure 25. Regression Analysis of (a) Based on R5FF Data Library

The Prediction Profiler in Figure 25 shows very similar relationships to the ones
that appear in the NOLH-based regression model. Though an interaction between
ACStealth and EnRadar-PClass is statistically significant, and we leave it in the model

for maximal predictive capability, the effect is not deemed to be practically significant.
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Thus, we choose not to include the interaction plot in the results to conserve space. The

prediction formula for a is shown in Figure 26.

a = 0.00003851510817
+|0.00000534451497 * Cormmiat

+|-7.567603878e-10* AC-EffRng
+|-4.0889467676e-9 * AC-EffRng-Phit
+(-3.0586745107e-7* ACStealth
+(8.20982716%e-10* EnAC-EffRng
+(4.9712450199e-9 * EnAC-EffRng-Phit
+6.6686311448e-11* EnRadarfng
+|1.4938431147e-9* EnRadar-Pclass
[|/ACSteatth - 15

+#| EnRadar-Pelass - 4500
*1.8932282578e-11

Figure 26. Prediction Formula for (a) Based on R5FF Data Library
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'Summary of Fit Analysis of Variance

RSquare 0.982548 Sum of

RSquare Adj 0.080211 Source DF  Squares MeanSquare  F Ratio
Root Mean Square Error 23016 Model 15  3.3383e8 2.22559 420.3821
Mean of Response 7.786e5 Error 112 5.9294e-10 5.294e-12 Prob>F
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Figure 27. Regression Analysis of (b) Based on R5FF Data Library

Next, a regression model is fit for the killing power of Red on Blue (b), and the
result is shown in Figure 27. The RSquare value (0.982) is, again, high, as in previous

models.
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b= |0.00006154699201
+|-0.0000048865772* CormmLat

+|6.745312045e-10* AC-EffRng
+(3.5608437132e-9* AC-EffRng-Phit
+|0.00000022289229 % ACStealth
+|-6.403067946e-10* EnAC-EffRng
+|-3.8530133895e-9 * EnAC-EffRng-Phit
+9.1198850647e-11* EnRadarRing
+-1.0400298844e-9 * EnRadar-Pclass

+ [Commiat -1 *[ EnAC-EffRng - 65000 * -4.778019425e-11

+ lAC-EffRng -[65000]| * [ /ACStealth - [15] *-2.404570063e- 12

+

AC-EffRng - /65000 | * [ EnAC-EffRng - 65000 * 2.4587842727e-15

+ [[EnAC-EffRng - 65000 * | EnRadarRng - 250000 * -1.545119184e-15

[
[
[
+ [lAC-EffRng - /65000 * | EnRadarRng - 250000 *[1.8663887722e-15
[
+ | [EnAC-EffRng - 65000 * | EnRadar-Pclass -|4500]) *[-1.138222181e- 14
[

+ [[EnRadarRng - 250000 * | [EnRadar-Pclass - 4500]| *|-8.783801664e-15

Figure 28. Prediction Formula for (b) Based on R5FF Data Library

Interestingly, this regression for b has more statistically significant terms than the
equivalent model for b based on the NOLH data. Though not all terms are deemed to
have practical significance, including a set of the interaction terms. As before, though, we
are choosing to leave all statistically significant terms in the final model. The fact that
more statistically significant terms were picked up with the R5FF as compared to the
NOLH may be the result of the corner-sampling aspect of the R5FF, which tests
parameters at intervals more extreme (thus, larger ranges) than the space-filling NOLH
design. The diagnostic plots indicate that the assumptions of linear regression are
satisfied. As seen previously, the effective missile range of both side’s aircraft have the
strongest effect on the response, b. The prediction formula for b is shown in Figure 28.

Finally, we fit a model for P(Win) based on R5FF data, and the result is shown in
Figure 29. Again, the Rsquare value is very high (0.986), and the diagnostic plots look
reasonable. The most influential factors are shown in Sorted Parameter Estimates.
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Aircraft missile effective ranges have the largest impact on P(Win), which is reasonable

and confirms intuition. The prediction formula is given in Figure 30.

Sum mary of Fit Analysis of Variance
RSquare 0.086449 Sum of
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Figure 29. Regression Analysis of Engagement Model P(Win) Based on
R5FF Data Library
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P (Win) = 0.76815858790338
+|-0.0521909565816 * CommLat
+|0.00000655023044 * AC-EffRng|
+(0.00003524308684 * AC-EffRng-Phit|
+|0.00246506297965 * ACStealth
+|-0.000006766187 * EnAC-EffRng|
+-0.0000415555868 * EnA C-EffRng-Phit|
+|-0.000000340344 * EnRadarRng|
+(-0.0000137509876 * EnRadar-Pclass|

+ [lACSteattr] - [15]) * [ EnRadar-Pclasd- 4500 < -1.5251799418e-7]

[ [EnAC-EffRng - 65000 * | EnRadar-Pclass - 14500] * [9.597037514e-11

Figure 30. Prediction Formula for Engagement Model P(Win) Based on
R5FF Data Library

[+

C. Comparing the NOLH and R5FF Metamodels

When we compare the NOLH and R5FF metamodels, we conclude that they are
largely similar in terms of the relative magnitude of the strongest effects, but that there
are a few differences as well. As one example, the NOLH allowed us to detect the
quadratic effect of the Red AC-EffRng on b and P(Win). The R5FF, sampling each factor
at only two corner points, does not allow us to detect the quadratic effect. The R5FF,
does, however, allow us to pick up a few other statistically significant effects, as the
range of the parameters is generally larger than it is with the NOLH. In short, the choice
of design technique provides different abilities to explore the design space. Time
permitting, both designs can be added together to achieve both good space-filling and

corner-sampling.

The prediction formulas for a and b, will be plugged into the metamodel P(Win) =
f(a,b) that will be obtained from the result of running a designed experiment on the
campaign model. This will yield a composite, embedded metamodel which will allow us
to explore the effects of engineering-level decisions and changes on the outcome of

campaign.
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B. CAMPAIGN-LEVEL MODEL PROCESS

The campaign-level model is coded using Python Notebook, and implements the
stochastic Lanchester Linear Law model presented in Chapter II. Metrics captured are
Red Casualties, Blue Casualties, and P(Win). It simulates a 100-vs-100 aircraft campaign
engagement between Blue and Red, with four discrete time periods. In each of the four
time periods, 25 Red aircraft engage 25 Blue aircraft. Each side has a breakpoint for each
time period. If a side experiences enough casualties as to reach their breakpoint, they will
disengage the other force. The Python code reads in csv files of the NOLH and R5FF
data libraries, and utilizes the different sampling methods shown in the work flow
diagram (Figure 9) to perform replications of the model. Since we utilize different
methods for sampling, there will be different output data files to analyze and compare.
All the sampling methods and campaign simulations are done within the Python code. At
the end of each campaign, the number of casualties is summed, and the side with fewer
casualties is deemed the winner. For each stochastic replication of the campaign, the
aforementioned campaign metrics are calculated and stored. The Python code is given in

the Appendix.

1. Campaign Model Input Calculations and Input Analysis (Block 1F of
Work Flow Diagram)

Utilizing the Lanchester linear law equations presented in section 11.D.1 of this
thesis, attrition coefficients for each force, (a) and (b), for each run are calculated using
formulas that we now re-present below for convenience in equations 4.1 and 4.2. Also

these equations are utilized for all campaign models of each sampling method.

x casualties

(4.1)

- (time)-(one x participant)-(one y participant)

y casualties
= — — — 4.2)
(time)-(one x participant)-(one y participant)

The work flow diagram contains seven different sampling and DOE methods
applied to the campaign model. Though we discuss the details of these seven methods in
the remainder of this chapter, here we show in Figures 31 and Figure 32 the side by side
boxplots of the a and b values for these seven methods. Since we have not yet presented
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all of the details about these individual methods, the main take-away at this point is
simply to notice how different the input ranges are across these seven methods.

Therefore, we should expect large and practical impacts on the campaign results.

a (Killing Power of Elue on Red) vs. output

0.00015 +

| L L
'III.DDD1—- L o o
0.00005 T
N

a (Killing Power of Blue on Red)

= [T = [y [TH
= g i =g = g [
3 e g 3 =3 2
3 £ g g g o =
s 8 & & & § f
5] pal £ T T = Eu%
= E = = = I
=] o = .E & =
BB 5 5 £ :
=
= z T o
& i
s ]
E
E
3
e

Figure 31. Comparison of (a) Value Obtained from Different Sampling
Methods and Experimental Design

Figure 31 shows the difference among a inputs obtained by employing seven
different methods. We note that the “Summarized Linked Campaign” and the two
“Taking Means” results have similar medians. We can also see that

“Random_from_NOLH” and “Raw_Linked_Campaign” have skewed distributions.
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b {Killing Power of Red on Blue) vs. cutput
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Figure 32. Comparison of (b) Value Obtained from Different Sampling
Methods and Experimental Design

In Figure 32, we show the box plots of b inputs for the seven methods. Except for
the skewed output from the “Random_from_R5FF” method, we note that the other

methods produce numerically similar medians.

2. Campaign Model Runs by Employing Sampling Methods and Output
Analysis (Blocks 2A, 2B, 2C, and 2D of Work Flow Diagram)

A function in python, called “lanch” is written, which simulates one of the four
engagements (time periods) in an air-to-air campaign. This function is therefore called
four times to simulate an entire air campaign. One engagement consists of 25-vs-25
aircraft, fighting until one side reaches its breakpoint, which is six remaining aircraft, a
quarter of the operation’s force size. For every method of running the campaign model,
according to the work flow diagram, the lanch function is called, the specified number of

stochastic replications are performed, and the campaign outputs are written to csv files. It
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takes approximately four seconds to run the campaign model, with the author’s laptop

having the features listed in section I1.E.4.

a. Using Overall Sample Mean of MANA Outputs (Block 2A of Work Flow
Diagram)

First, the campaign model is run for 10,000 replications, using a single point

estimate for a and a single point estimate for b. The point estimates are generated using

the overall sample mean (over the MANA library) of Red casualties, Blue casualties, and

length of the engagement within equations 4.1 and 4.2.

Since we use point estimation by using the overall mean of the MANA model
outputs, running the campaign model merely provides us with a single point estimate of
P(Win), but as well a data library (with 10,000 rows) of Blue and Red casualties. With
10,000 replications, the standard error associated with P(Win) will be no greater than
.005.

We run the campaign model over 10,000 replications two times, once using the
sample means obtained from the NOLH data library, and once using the sample means
from the R5FF data library.

1) Taking Overall Sample Mean Input from NOLH Data Library

Running the campaign model with overall sample means from the NOLH data
library provides the histogram and summary statistics shown in Figure 33. We note again
that we obtain a single point estimate (value) for P(Win). Our estimate for P(Win) is .341.
This point estimate would of course change if the model is re-run for another set of
stochastic replications. Having only one point estimate is not a reasonable and plausible
outcome for an analyst whose goal is to provide insight to a decision maker which takes
into account uncertainty in the outcome of the campaign. On the other hand, this
sampling technique does provide distributions, vice a single point estimate, for Red and
Blue casualties. Having an entire distribution of data does provide an adequate means to
understand uncertainty, and thus, risk. As seen in Figure 33, the two output histograms
(Red casualties and Blue casualties), in this case, are left-skewed. And we also notice that

Red takes more casualties than Blue, on average. The “spike” that occurs at 76 Red
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casualties, this is the case where Blue wins every battle. A similar but smaller spike can

be seen in the Blue casualties histogram.

(=]Distributions of Campaign Model Output (Taking Overall Means from NOLH Data Library)
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Figure 33. Distributions of Campaign Model Output (Taking Overall
Sample Means from NOLH Data Library)

(2 Taking Overall Sample Mean Input from R5FF Data Library

Next, we used the overall sample means of Red and Blue casualties as well as
length of engagement from the R5FF data library. The resulting histograms and summary
statistics are shown in Figure 34. As before, instead of a distribution, we obtain a single
point estimate for P(Win), in this case equal to 0.461. And, we again note that this point
estimate would be expected to change if the model is re-run.
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= Distributions of Campaign Model Output (Taking Overall Means from R5FF Data Library)
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Figure 34. Distributions of Campaign Model Output (Taking Overall
Sample Means from R5FF Data Library)

In Figure 34, we observe distributions that are similar to those generated using the

NOLH data library. The summary statistics are also similar to those from the NOLH data.

When we compare histograms and summary statistics of the output from both
designs, we observe that there are differences, such as differences in the sample means
for Red and Blue casualties and slight differences in the shapes of the distributions. We
can attribute these differences to the space-filling vs. corner-sampling aspects of the

NOLH and R5FF designs, respectively.

More important than the slight differences between the two design outputs,
however, is the main point that simply generating a single point estimate for P(Win) is

insufficient, in terms of being able to properly evaluate uncertainty and risk.
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b. Random Sampling (Block 2B of Work Flow Diagram)

In the previous step, we generated single point estimates for a and b, based only
on sample means from the MANA data. In contrast, in this step, we utilize random
sampling to provide a range of a and b estimates as input to the campaign model. We will
do 1,000 different stochastic Lanchester “runs,” where on each run, we will randomly
select a different pair of a and b values from the MANA output for each of the 4
engagements in the campaign model. In other words, in total, we will randomly sample
4,000 rows (pairs of a and b values) from either the NOLH raw output or the R5FF raw
output. Each run utilizes four of these pairs, one for each engagement time period.
Likewise, the lanch function is utilized for each 25-vs-25 engagement. The sampling is
done uniformly, without replacement. Recall that the NOLH raw output has 129,000
rows that could potentially be selected and the R5FF raw output has 128,000 rows that

could potentially be selected. For each run, we perform 100 stochastic replications.

@ Random sampling from the NOLH Data Library

Here we select pairs of a and b values from the NOLH raw output data library.
The resulting histograms and summary statistics, for P(Win), Blue casualties, and Red

casualties, are shown in Figure 35.
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[~ Distributions of Campaign Model Output (Random Sampling From Engagement Model NOLH Data Library)
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Figure 35. Distributions of Campaign Model Output (Random Sampling

from MANA NOLH Raw Data Library)

We can make some interesting observations about the histograms in Figure 35.
First, most strikingly, P(Win) is bimodal. We note how misleading it would be to
interpret the point estimate of P(Win)=0.341, generated with the previous method, as
“likely” or *“representative,” when obviously that point estimate is not at all
representative of the set of possible outcomes that could occur. In other words, the risk of
making decisions based on a single point estimate is very high. What would be extremely
valuable to the decision maker, besides understanding the distribution/range of outcomes
as we do here, is to conduct designed experimentation in order to better understand which
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factors are driving success/failure. That is what we accomplished via Steps 1A through G

of our work flow.

We also note that there are some small gaps in the histograms, which may be an

artifact of the random manner in which the a and b values were sampled.

@) Random sampling from the R5FF Data Library

The same random sampling process is next performed on the R5FF data library, in
order to provide input to the campaign model. The result is shown in Figure 36. It can be
seen that, again, there are gaps between bars in the casualty histograms. An interesting
difference, as compared to the NOLH random sampling, is that the average P(Win) is
substantially higher than it was with the R5FF data. This is an interesting outcome that
shows how the choice of design can affect the results obtained. We once again advocate
appending an R5FF design to an NOLH design, if time permits. We should also keep in
mind that in this method we have only sampled a small portion of each of the raw data
output libraries, that is, 4,000 samples taken from 129,000 rows for the NOLH and
128,000 rows for the R5FF.
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||E| Distributions of Campaign Model Output (Random Sampling From Engagement Model R5FF Data Library)
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Figure 36. Distributions of Campaign Model Output (Random Sampling
from MANA NOLH Data Library)

Similar interesting observations are observed in the histograms in Figure 36. As in
previous random output, P(Win) has bimodal distribution. Here we again can say that
applying point estimation to random MANA data output will be underestimating the
uncertainty and risk. Understanding the distribution of outcomes is important, however,
transferring the features of the distributions to higher level model is more important. The

gaps in the histograms can be seen in Figure 36.
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C. Linking Engagement and Campaign Models Directly (Linked
Metamodeling; Block 2C of Work Flow Diagram)

We now describe Block 2C of the Work Flow Diagram, where we simulate the
“direct linking” of the MANA engagement level output to the campaign model. We will
demonstrate this method using the NOLH data, in order to take advantage of the space-
filling feature of the design. Linking will work as follows: over the entire NOLH design
space, run the Stochastic Lanchester model for every pair of a and b estimates (calculated
from the MANA data), performing 30 random replicates for each pair. The lanch function
is utilized for each period of campaign. This is in contrast to the previously described
random sampling method, in that we will not sample a small portion of the NOLH space,
but the entire space. We will perform this method using both the raw (full) data output
library as well as the summarized data library. This method is analogous to running the
campaign model with the ability to “call out to MANA” for a set of replications in the
engagement model for some specific setting of design factors. This method would in
actuality require software to link the two models and allow for “on demand” requests for
MANA runs. Instead, what we have done here for simplicity is pre-generate the library of

MANA data across the entire design space of interest.

1) Linking Raw (Full) NOLH Data Library to Campaign Model

For each of the 129,000 calculated a and b values which are obtained from the
engagement model raw NOLH data library, we performed 30 replications of the
stochastic Lanchester model. Same a and b values are used for all periods of the
campaign model. As a result, we obtain 129,000 rows of output, which include the means

of our campaign metrics over the 30 replications.
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4 (=) Distributions of Campaign Model Output (Linking Raw NOLH Data Library to Campaign Model)
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Figure 37. Distributions of Campaign Model Output (Linking Raw (Full)
NOLH Data Library)

In Figure 37, the P(Win) histogram shows how the probability of win “piles up”
on only two outcomes, 0 and 0.6. At first, this seems like an unrealistic outcome.
However, when we analyze the data we understood that this feature of the P(Win)
histogram is the artifact of MANA model choice. Since we decided two have a 2-versus-
2 engagement, there are only two outcomes of this engagement for each side. One side
can reach its goal (returning to base) if the other side’s fighters are shot down. In other
words, one side wins either by not losing any fighters or losing one fighter when the other

side loses both of its fighters. Therefore, the number of casualties can be only 1 or 2 for
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each side. As mentioned before, we calculate the attrition coefficients for the campaign
model, a and b, using this number of casualties. Having a lack of variability in the
casualty numbers impacts the calculation of the attrition coefficient values. As a result,
one side has superiority and therefore every time wins or loses campaign, which is why
there are only two bars in the P(Win) histogram. Summary statistics are not sufficient in
this case since the mean is not representative of the distribution of outcomes, and the

result is very different from the output of other sampling techniques.

So, even though this method utilizes the entire data library, it does not provide
output to reasonably assess risk and uncertainty. We note that in order to increase
variability in P(Win) and number of casualties, the number of fighters in the engagement
model could be increased beyond two per side, so that there would potentially be more
combinations of Blue and Red casualties observed in the data.

2 Linking Summarized NOLH Data Library to Campaign Model

Secondly, we run the stochastic Lanchester model 30 times for each of the 129 a
and b estimates which are obtained from the summarized (by means) NOLH data library.
Likewise, same a and b values are utilized for all periods of the campaign model. As a
result, we obtain 129 outputs which include the means of our campaign metrics over the

30 replications. The results are shown in Figure 38.
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Figure 38.

The distribution histogram of P(Win) in Figure 38 now illustrates much more
variability in the campaign outcome than in the previous step, which of course provides
us a better assessment of uncertainty. The average value of P(Win) is 0.364, so Red has
low probability of winning. Also, the spike on zero in the P(Win) histogram shows that
Red has no chance of winning for a substantial number of runs (i.e., design points). In the
summary statistics for P(Win), it is seen that the standard deviation of P(Win) is 0.364
which is very close to the mean, 0.364. This can be interpreted that there is large

variability in P(Win) compared to the mean. Additionally, the mean of Red casualties
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(67.068) is greater than the mean of Blue casualties (60.415), however, Red casualties
has a bit lower standard deviation (8.386) than Blue casualties (10.373). Histograms of
casualties for both sides are left-skewed. The spike on the 70-76 interval in the casualty
histograms shows that one side loses most of its aircrafts in the campaign, which is an
expected outcome when a Lanchester linear law is applied with break points. The

variability in casualty histograms represents the risk in the campaign.

d. Constructing a Composite (Embedded) Metamodel for P(Win) (Blocks
2D.1, 2D.2, and 2D.3 of Work Flow Diagram)

1) Performing a DOE, varyingaand b

In this step, we conduct an experiment to vary two inputs to the campaign model,
a and b. Note that we choose to fix the number of aircraft on each side. We use the ranges
of a and b from the R5FF raw data library to generate the ranges over which a and b will
be varied in the experiment. The range of a or b is simply its maximum value minus its
minimum value. The reason we use the R5FF raw data, instead of the NOLH raw data, is
that the R5FF tests the corner points while the NOLH tests the interior of the design
space. We wanted to have the maximum possible (while remaining realistic for our
model) ranges for a and b, therefore, we determined the use of the R5FF data to be more

appropriate since it tests at more extreme points than the NOLH.
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A = Multivariate Analysis of (a) and (b} Values
Generated from Engagement Mode R5FF Data Library
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Figure 39. Multivariate Analysis of a and b Design Values

We chose to cover the ranges of our two factors with 11 points (levels) each, and
generated a 121 DP full factorial design. A full factorial design tests all possible
combinations, so this one contains 11x11=121 design points. Figure 39 shows the
correlations and scatterplot matrix of the design. Since this is a full factorial design, we
achieve perfectly even coverage over the space, and there is zero correlation between the
two factors. Each DP is replicated 100 times. The output distributions of these runs are

presented in Figure 40.
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A: = Distributions of Campaign Model Output ( DOE on (a} and (b} Data Library) |
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Figure 40. Distributions of Campaign Model Output (DOE on (a) and (b)
Data Library)

We note that the P(Win) histogram in Figure 40 is similar to the P(Win)
distribution of linking summarized NOLH data library, given in Figure 38. In the side-by-
side boxplots we will present in section B.4 of this chapter, we’ll continue the
comparison of P(Win) and casualties to the other methods. The main goal of this method,
though, is to obtain a metamodel for P(Win) as a function of a and b, which we

accomplish in the next section.
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2 Fitting a Metamodel for P(Win) as a Function of a and b

With the output from the experiment, we fit a logistic regression model for
P(Win) as a function of a and b.
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Figure 41. Logistic Regression Analysis of P(Win) = f(a,b)
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We choose logistic, vice linear, regression because of the fact that our response
P(Win) is constrained to the interval [0,1]. In Figure 41, the p-value for the Whole Model
Test is less than our chosen level of significance (0.05), which indicates that the model is
statistically significant as a whole. The Prediction Profiler shows the marginal s-shaped
curves that result from logistic regression. The Surface Profiler allows us to visualize
how the attrition coefficients together affect P(Win). As a increases, P(Win) decreases;
and as b increases, P(Win) decreases. The prediction formula for P(Win) is shown in

Figure 42.

P (Win) = 1

-0.2211848268046
1+ Expl -| +-133359.42273247* a

+136236.683994893* b

Figure 42. P(Win) Prediction Formula

3 Construct a Composite (Embedded) Metamodel for P(Win) (Block 2D.3
of Work Flow Diagram)

We now analytically construct a formula for P(Win) = f(Blue and Red experiment
variables) by plugging in the previously obtained stepwise regression models for a and b
into our logistic regression of P(Win). As a result, we obtain a composite, embedded

metamodel; and its formula is shown in Figure 43.
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P{Win) =

-0.2211848268046
-133359.42273247
[ 0.00002139730028
+0.00000804262402* CommLat
+(-8.200272952e-10* AC-EffRng
+[-2.8180536759-7 * ACSteaith
+| | +/8.458263398e-10* EnAC-EffRng
+(5.261192657e-9 * EnAC-EffRng-Phit
+/4,899557241e-11* EnRadarRng
[ laC-EffRng - 65000.0620155039)
+ # | .AC-EffRng - 65000.0620155039
#-1,151705944e-14

)

36236.683994893
0.00009339991 368
+ 6.4841118473e-11* AWACS-Rng

+ -0.0000078766007* Commlat
+|7.83126443%-10* AC-EffRng
+|0.00000025587656 * ACStealth
+|-7.286605462e-10* EnAC-EffRng

| +|-49313410182e-9* EnAC-EffRing-Phit

£

Figure 43. Embedded P(Win) Metamodel as a Function of Red and Blue
Parameters

As a result, we obtain the ability to calculate an estimate for P(Win) for any
combination of the engineering factors in the original MANA experiments, though it is
important to note that this constructed embedded metamodel is now deterministic. Plug in
a set of values for the engineering factors, and a single point estimate for P(Win) is
obtained. We will next compare the performance of this metamodel to the linked version

of the metamodel.
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3. Comparing the Directly-Linked Metamodel to the Embedded
Metamodel (Block 3 of Work Flow Diagram)

Here the main goal is to compare the result of the Linked Metamodel to the result
of the Embedded Metamodel. Additionally, we compare these two to the P(Win) estimate
obtained from the MANA engagement level model. Using the NOLH summary data, we
will compare these three methods for estimating P(Win).

The “P(Win) Campaign Model (Embedded Meta-Model)” results are obtained by
substituting each of the 129 Red and Blue experiment factor settings into the composite
embedded metamodel shown in Figure 43. The correlation and scatterplot matrices
appear in Figure 44. The “P(Win) Campaign Model (Linked Meta-Model)” results are

obtained as described in section B.2.c.

[Muttivariate
Correlations
P(Win) Engagement Model (MANA) P{Win) Campaign Model (Embedded Meta-Model) P(Win) Campaign Model (Linked Meta-Model)
P(Win) Engagement Model (MANA) 1.0000 0.8212 0.9493
P(Win) Campaign Model (Embedded Meta-Model) 08212 1.0000 0.9673
P(Win) Campaign Model (Linked Meta-Model) 0.8495 0.9673 1.0000

:Scatterplnt Matrix

0.7
0.6
05 P(Win) Engagement
Model (MANA)
04+
03
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14
0.8
0.6
04+
0.2
0-»

P(Win) Campaign Model
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11
081
061
044
0249

04+

P(Win) Campaign Model
(Linked Meta-Model)
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02 03 04 05 06 07 0 02 04 06 08 1 0 02 04 06 08 1

Figure 44. Comparison of Model Outputs (Correlation Matrix and Scatter
Plot Matrix)

We see from Figure 44 that all pairwise correlations amongst the three are close to
1.0, which means they are nearly linearly related. Additionally, they are all positive,

which is a good sign. However, we also observe how bimodal the two campaign model
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results are. Since this comparison is made on the summary (means) NOLH data, we next

conduct a comparison based on the full dataset.

For ease of visualization, we conduct the next comparison of the Embedded
Metamodel result to the Linked result by means of a small one-factor experiment. In this
experiment we will vary one of the most influential factors from our original 10-factor
experiment, the effective range of the Red aircraft missile (AC-EffRng). The other factors
are not varied and holding them at their baseline levels. We vary AC-EffRng from
50,000m to 80,000m, in 500m increments. Each of our resulting 61 design points is
replicated 1,000 times. We first perform the MANA runs for this small experiment, to
generate the 61,000 row MANA library of output. As before, to the MANA results we
add columns for our calculations of the a and b estimates. We then run the stochastic
Lanchester model for each of these 61,000 pairs of a and b values, replicating 100 times
for each pair. As a result of the 61,000 x 100 Lanchester campaign model runs, we obtain
“P(Win) Campaign Model (Linked MetaModel).”

Next, we obtain “P(Win) Campaign Model (Embedded MetaModel)” by simply
evaluating the deterministic composite embedded formula for P(Win) over the range of

AC-EffRng values, holding the other variables in the formula at their baseline levels.

In Figure 45, we compare the P(Win) Campaign Model (Embedded MetaModel)
results in blue to the P(Win) Campaign Model (Linked MetaModel) results in red. The
red dots represent the mean for each DP and the red error bars correspond to the standard
deviation of the data. Because the error bar represents the standard deviation and not the
confidence interval for the mean, the outermost edges of the bars fall below zero and
above one. The blue dots and connecting line represent the output of the embedded
metamodel. There is only one dot for each design point, because the model is
deterministic. The difference in the two sets of results is evident. Clearly the use of the

deterministic embedded metamodel is inadequate to assess risk.
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P{Win} Campaign Medel (Embedded MetaMaodel) in blue
compared to
P{(Win} Campaian Model (Linked MetaModel} in red

1.25

1.00+

.
0.75- P

0.25-¢%"

.00+
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Each error bar is constructed using 1 standard deviation from the mean,

Figure 45. Comparison of Embedded to Linked Metamodel Results, Based
on a One-Factor Experiment

Additionally, we note that after about design point-10 (DP-10), the P(Win)
estimate obtained from embedded metamodel becomes larger than the P(Win) estimate
from the linked metamodel. The use of the embedded metamodel would therefore cause

an underestimation of risk for most cases.

4. Compare Campaign MOEs Based on the Sampling Methods (Block 4
of Work Flow Diagram)

We now compare the outputs of the campaign-level model sampling methods
using JMP’s graphic builder platform. The seven methods we have used in this research
are referred to by the following names:

1. Taking Means_NOLH
2. Taking Means_R5FF
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Random_from_NOLH
Random_from_R5FF
DOE_Campaign
Raw_Linked_Campaign
Raw_Summarized_Campaign

No ko

In Figure 46, we compare the estimate for P(Win) by method and in Figure 48, we
compare the estimate for average casualties by method. Each of these figures contains
side by side boxplots, with the data points overlaid. We can clearly see a large and

practical impact of the sampling method chosen.

Graph Builder
P(Win) vs. output
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Figure 46. Comparison of Campaign P(Win) Obtained from Different
Sampling Methods and Experimental Design

In Figure 46, it can be seen that the campaign-model P(Win) estimate’s median
and distribution differs across the sampling methods. “DOE_Campaign” and

“Summarized_Linked _Campaign” have distributions that are not too dissimilar, but
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Summarized_Linked_Campaign has the most even spread of points (few *“gaps”).
Interestingly, the “Random_from_R5FF” method resulted in output that is symmetric.
The Random_from_NOLH and Random_from_R5FF approaches produced tri-modal
data, and as we observed, previously, the data from Raw_Linked_Campaign is bimodal.
Additionally, it is obvious that the point estimates obtained by the “Taking_Means”
approaches would underestimate the variability, and thus risk, in the P(Win) campaign
MOE.

Graph Builder
Avg Red Casualties vs. output
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Figure 47. Comparison of Campaign Average Number of Casualties
Obtained from Different Sampling Methods and Experimental
Design

Figure 47 contains the boxplots overlaid with points for the average number of
casualties by sampling method. In general, we expect the casualty boxplots to have
skewed distributions, however, we observe close to symmetric data in the
Random_from_NOLH and Random_from_ R5FF cases. This may be an artifact of
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sampling method. On the other hand, the Summarized Linked campaign data is
somewhat skewed but still exhibits fairly even spread over its range, in terms of the lack
of gaps. Raw_Linked_Campaign data is tri-modal, and the DOE_campaign is also
somewhat skewed, but doesn’t contain large gaps in its range. The Random_from_NOLH
and Random_from_R5FF data exhibits gaps across their ranges, due to the nature of the
sampling. Of course, the main takeaway from Figures 46 and 47 is that the campaign

estimate varies substantially by sampling method.

88



V. DISCUSSION AND CONCLUSION

In this study, we constructed two models, one engagement-level and one
campaign-level, in order to construct a simple hierarchical modeling process. Using these
models, and exploring the link between the two, we explored how the variance (error)
propagates through hierarchal air combat models. As mentioned in Chapter I, this thesis
has sought to extend similar research conducted by LT Russell Pav in 2015. One of Pav’s
conclusions was that random sampling may not mitigate bias neither in the mean nor
variance of campaign output (Pav, 2015). Beyond conducting random sampling on a
different scenario than the one Pav used, this study employed additional techniques to
sample from or link to the lower level engagement model. In particular, we explored and
compared the embedded metamodeling and linked metamodeling approaches, and
established a key difference between the two; namely that the deterministic embedded

metamodeling technique can lead to biased results and underestimation of risk.

A. ASSESSING UNCERTAINTY AND RISK

There is always uncertainty in the output of stochastic models; that is the nature of
modeling with random elements. A useful endeavor, then, is to utilize design of
experiments to discover robust configurations of controllable decision variables, given
uncertainty in uncontrollable variables such as the environment and enemy composition
and tactics. Potentially exacerbating the uncertainty in hierarchical stochastic models
would be to inappropriately sample from a lower-level model’s outputs to feed as input to
the higher-level model. Therefore, a goal of this study was to explore methods to
accomplish this. We generated a MANA engagement model to provide input to a
stochastic Lanchester campaign model, and performed designed experiments on the
MANA model. We then analyzed engagement model outputs to analyze their
distributions and fit metamodels for the MOEs as functions of the experiment variables.
We then compared inputs for the campaign model obtained by a variety of sampling
methods, including executing a designed experiment on the campaign model. Figure 31

and Figure 32 illustrated how the attrition coefficient distributions differed according to
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method. This is the first level of assessment of uncertainty in hierarchical modelling—

examining the distributions of inputs.

After running the campaign model with different input libraries, we conducted the
second level of assessment of uncertainty in hierarchical modelling. Figures 46 and 47
contain the side by side box plots that show how the campaign model output can differ
substantially according to the sampling method that is used. Utilizing one of the methods
which is not sufficient to propagate variance from the engagement model output to the
campaign model may lead the analyst to an incorrect assessment that may underestimate

risk, potentially costing money and losing lives.

Using point estimation by taking the sample mean is the easiest and simplest way
among these sampling methods, and is commonly used; however, Figures 46 and 47
show that taking means does not provide the ability to evaluate variability and risk.
Random sampling techniques provide a distribution of results, but we should keep in
mind that not all random sampling methods fully characterize the underlying uncertainty,

and the result may change on repeated runs.

We also discuss two techniques which we call the deterministic embedded
metamodel approach and the linked metamodel approach. As Figure 45 demonstrates, the
linked metamodel is capable of characterizing the underlying uncertainty, while the
deterministic embedded metamodel does not. Also, as we discussed, an excellent method
for systematically exploring uncertainties in the scenario is design of experiments (DOE),
and the result of the DOE can adequately characterize variability and risk. We chose to
illustrate the use of DOE by using both the Nearly Orthogonal Latin Hypercube (NOLH)
and the Resolution 5 Fractional Factorial. Figure 45 shows that the metamodel linked to
DOE output is much more effective and useful for quantifying risk than the embedded
metamodel, since it captures the variability that results when one of the engineering
factors is varied over a range. Additionally, we recommended that if time permits, it
would be desirable to supplement the desirable features of the space-filling NOLH with
the corner-sampling R5FF.
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B. AREAS FOR FUTURE RESEARCH

We generated a two vs. two air-to-air engagement model since no fighter aircraft
flies alone. While analyzing the result of linking the raw (full) NOLH data library to the
campaign model, we observed that the two vs. two engagement’s outcome can be either
one side wins with no casualties or one casualty. In other words, the two vs. two
engagement provides less variability in model output than there would be in a several vs.
several engagement, since there are only two outcomes for each side. As a result of that,
campaign outputs obtained from the runs on raw (full) NOLH data library exhibited very
low variability. Therefore, to achieve more variability in engagement model output, the
number of fighters could be increased (three vs. three or four vs. four). This would
increase the variability in the engagement level model output; and linking the raw data
library to the campaign model can then be more plausible and serve as an effective way

to propagate variance forward into the campaign model.

This study employed MANA for the engagement model and the Lanchester linear
law for the campaign model. Even though MANA allows the user to model many
engineering factors of military assets and battle conditions, the program comes with some
significant limitations and assumptions. Additionally, we do not use models that are
accredited by any official organization. There certainly exist accredited higher resolution
simulation programs for modeling air missions. Thus, using more detailed and realistic
modeling tools such as BRAWLER and STORM for studies related hierarchical combat

modeling may provide better insights.
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Here, we provide the code for the stochastic Lanchester linear campaign models
within a Python Notebook page. First, necessary programming packages are installed,
then the model takes in csv files of both NOLH and R5FF data libraries that are obtained
from MANA model runs. We built a function called “lanch” which simulates one time
period of an air campaign. Then, we employed different sampling methods to sample
from both data libraries to provide input to the campaign model. A campaign model code
for each sampling technique was written and “lanch” function was utilized within these
campaign codes to simulate 100 vs. 100 campaigns between Red and Blue. The number
of replications for campaign models are arbitrarily selected to have enough runs to
provide mean statistics for each campaign MOES. After each model run, summary
statistics are recorded as a data frame and written to a csv file. Since Python Notebook is

employed, screen shots or code and statistics are presented below in Figures.

APPENDIX

@ Editor - Canopy
file Edit Yiew Geach Bun Tock Windew Help
HE A0 & @&
Campuairs Model Code s
Qo x B 4+ 4+ ¢+ B C
& £rom nuspy and matplotlib
201, hesd ()
| | 7 _ |ac _ |EnAc Neutral | |
Tdentitier | "WACS [AWACS-| o mtar| S | etrng- | Acstearn| ™ | EtRng- | EnRadarRng | .. Reach | Steps| Sqd1Cas | sqd2cas|sqaacas
|Rng | Priass. Effitng | Effitng _ | |
| | Phit Phit Goal
0|I0ED 339375 !SIQCG 08 63594 8300 21 66875 8800 253281 | NO 3915 |0 |0 EU
1{I0EC 335375 | 8900 0.8 63594 | 8300 21 66875 (BBOD 253281 PR 3740 |0 [} :0
2|00 339375 ia‘JU‘.‘ 08 63594 8300 21 | 66875 (8800 253281 e | NO 4037 |2 (o o
3|10€0 (339375 !SQGG 08 63594 8300 21 66875 |8800 253281 e | NO 4014 |2 {d 1]
410E0 |33937s | 8300 o8 63594 | 8300 21 66875 |BB00 253281 - |NO 4014 |2 lo .0
S rews % 28 colming
-Phit]]

Notebook-1
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nolhdata.head ()

In [9]:

AWACS-Rng | AWACS-Pdass | CommLat | AC-EffRng | AC-EffRng-Phit | ACStealth | EnAC-EffRng | EnAC-EffRng-Phit
0339375 8900 0.8 63594 8300 21 66875 8800
1|339375 §900 0.8 63594 §300 21 66875 8800
2|339375 8900 0.8 63554 8300 21 66875 8800
3339375 8900 0.8 63594 8300 21 66875 8800
4339375 §900 0.8 63594 §300 21 66875 8800

Identifier AWACS- CommLat AC ACStealth EnAC- EnRadarRng AWACS- :f'(;Rng— :;’lf.:ﬁg— :::z;al Steps | Sqd1Cas | Sqd2Cas | Sqd3Cas

Rng EffRng EffRng Pdlass Phit Phit Goal

0|I0ED 400000 (2 80000 |30 80000 |280000 10000 9000 9000 .|No 3716 |0 0 0
1|I0ED 400000 |2 80000 |30 80000 | 280000 10000 9000 9000 .| No 3683 |1 0 0
2|I0ED 400000 (2 80000 |30 80000 |280000 10000 9000 9000 .|No 3902 |2 0 0
3|I0ED 400000 (2 80000 |30 80000 | 280000 10000 9000 9000 .|No 3874 |2 0 0
4| I0ED 400000 |2 80000 |30 80000 | 280000 10000 9000 9000 .| No 3677 |0 0 0

5 rows x 28 columns

Figure 49.

def

lanch(a,b):

while (m>6 and n>6):

rate=a*n*mtb*m*n

Screen Shot of Campaign Model Code within Python
Notebook-2

ttnc=rd.expovariate (rate)

t=t+ttnc

if (rd.random() <= a*n*m/rate):

wm-1
else:

n=n-1

return (25-m,25-n)

Figure 50. Screen Shot of Campaign Model Code within Python
Notebook-3
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In [10]:

In [11]:

In [12]:

In [13]:

out[13]:

In [14]:

Cut[14]:

In [15]:

In [16]:

In [17]:

out[17]:

In [18]:

In [19]:

Cut[19]:

In [20]:

In [21]:

In [22]:

Cut[22]:

In [23]:

(b)
(nolh['Steps'] .mean()*2*2)

x_win=0
xcasulty=[]
yoasulty=[]
replications=10000
for i in range(replications):
==0
y=0 #x red, y blu
for § in range(4):
temp = lanch(al,bl)
w=x+temp[0]
y=y+temp[1]
®_win = x_wint(x<y)
xecasulty.append (x)
ycasulty.append (y)
p % win= x win *0.0001

Figure 51. Screen Shot of Campaign Model Code within Python
Notebook-4

#Probabi
p_x win

0.34290000000000004

g a dataframe with pandas package

outputl_Taking_Means Nolh = pd.DataFrame({'Red Casualties': xcasulty, 'Blue Casualties': ycasulty })

#looking at first 5 rows of Campaign output

outputl Taking Means Nolh.head()

Blue Casualties | Red Casualties
0|68 65
1|58 68
2|66 70
3|68 66
4|65 70

pover on Red (a)
.mean(} / (nolh['Steps'].mean()*2%2)

Figure 52.  Screen Shot of Campaign Model Code within Python
Notebook-5
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In

In

[24]:

[25]:

In [26]:

Out[

In

in

cut[28]

Iin

26]:

[271:

[28]:

[29]:

[30]:

[31]:

[32]:

[33]:

x_win=0
xcasulty=[]
ycasulty=[]
replications=10000

for i in range(replications):

==0

y=0 #x red, y blue

for j in range(4):
temp = lanch{a2,b2}
x=x+temp[0]
y=y+temp[1]

x_win = x_win+{x<y)}

xcasulty.append (x)

ycasulty.append (v}

p_x* win= x win *0.0001

#probabiltiy of Red Wins
p x win

0.45430000000000004

#building a dataframe with pandas package

cutput2 Taking Means_RSFF = pd.DataFrame ({'Red Casualties': xcasulty, 'Blue Casualties'

: yoasulty })

Figure 53.  Screen Shot of Campaign Model Code within Python

Notebook-6

2t first 5 rovs of Cam

Taking_Means RSEFF.head(}

Blue Casualties [ Red Casuallies
0| &0 (4]
1|67 72
2|73 GG
3|54 76
4|67 68

Figure 54.  Screen Shot of Campaign Model Code within Python

Notebook-7

nolh_1000=list() #
for 1 in range(1000)
sp=rd.sample (range (129000}, 4) #generating £ random number between 0 and 128.000
#ca ng a and b
a list=list{nolh.ix[sp]['Rlleg2Cas (Red)'] / (nolh.ix[sp]['Steps'] *2*2))
b_list=list(nolh.ix[sp] ['AlleglCas (Blue)'] / (nolh.ix[sp]['Steps'] *2+%2))

xcasulty=[]
yoasulty=[]
for i in range(100):

==0
y=0 #x red, y blue
for § in range(4):
temp = lanch(a list[j],b list[j]} #
==xt+temp[0]
y=y+temp[1]
x_win = x_wint(x<y) #
xcasulty.append (x)
ycasulty.append(y)
leul probabil
prob_x win = x win/ 100.0
prob_y win = 1- prob_x win

data

#5a

£ull_list=s_list+h list[x_win,prob_x win, prob_y win,mean(xcasulty),mean(ycasulty)]

nolh 1000.append(full list)

Figure 55.  Screen Shot of Campaign Model Code within Python

Notebook-8
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In [34]:
b2','b3','b4", 'nxw", 'prob_x win', 'prob y_win','mean x_|

< >

In [35]: random from NOLE.head()

Out[35]: al a2 a3 a4 b1l b2 b3 b4 nxw | prob_x_win | prob_y_win | mean_x_cas| mean_y_cas
0(0.000129|0.000130 0.000136|0.000138 | 0.000064 | 0.000065 { 0.000000| 0.000000|0 0.0 1.0 75.88 19.48
1(0.000132|0.000000 | 0.000133 | 0.000131 | 0.000000 | 0.000127 | 0.000000 | 0.000065 (0 0.0 1.0 56.92 28.67
2(0.000000| 0.000000 | 0.000051|0.000131|0.000125|0.000125(0.000102 | 0.000066 | 100 (1.0 0.0 29.14 65.89
3(0.000000|0.000000 | 0.000136|0.000063 | 0.000126 | 0.000122 (0.000000|0.000127 (100 (1.0 0.0 28.91 56.93
410.000129|0.000134|0.000135 [ 0.000062 | 0.000065 | 0.000000 | 0.000000 | 0.000124 |0 0.0 1.0 66.40 28.57

In [36]: #v. g output v file
random from NOLH.to_csv('output3_random from NOLH.csv')

Figure 56.  Screen Shot of Campaign Model Code within Python
Notebook-9
In [37]:
In [38]: f£f_1000=list{)

for i

sp=rd.sample (range (1
st (££.ix[ap] [ leg2Ca=(Red)'] / (£f.ix[sp] ['Steps'] *2%2))
list (ff.ix[sp]['AlleglCas(Blue) '] ! (ff.ix[sp]['Steps"] *2*2))

range (1000) :

% _win=0

xcasulty=[]
yoasult
for i il
x=0
v=0

x=x+temp [0]
y=y+temp[l]
x win = x win+(=<y)
xcasulty.append (x)
yoasulty.append (y)
prob_x win = x_win/ 100.0

prob_y win = 1- prob x win
full list=a list+b list+[x win,prob x win, prob y win,mean{xcasulty),mean(ycasulty)]

£f_1000.append(full list)

In [39]: random from RSFF= pd.DataFrame(ff 1000,columns=['al",'a2','a3','a4',’

,'nxw','prob x win', 'prob_y

'b2",'b3", in', 'mean_x cal

< >

Figure 57.  Screen Shot of Campaign Model Code within Python
Notebook-10
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In [40]: random from RSFF.head()

Out-[40]: al a2 a3 a4 b1 b2 b3 b4 nxw | prob_x_win | prob_y_win | mean_x_cas|mean_y_cas
0|0.000000 | 0.000141 | 0.000000 | 0.000064 | 0.000103 | 0.000000 | 0.000128 | 0.000127 | 100 |1.0 0.0 28.13 56.98
1/|0.000000 | 0.000061|0.000128|0.000000|0.000123|0.000123|0.000000|0.000120| 100 |1.0 0.0 28.52 56.99
2|0.000000 | 0.000063 | 0.000000 | 0.000140 | 0.000129 | 0.000126 | 0.000123 | 0.000000 | 100 |1.0 0.0 28.40 56.99
3|0.000052 | 0.000000|0.000065|0.000138 | 0.000105 | 0.000127|0.000130 | 0.000000| 100 |1.0 0.0 37.62 56.97
4|0.000136|0.000135| 0.000051 | 0.000137 | 0.000068 | 0.000000 | 0.000103 | 0.000068 | 0 0.0 1.0 66.42 37.39

In [41]: rondom from RSFF.to_csv('cutputd randem from RSEF.csv')

In [42]:

In [43]:

In [44]: ab_design=pd.read csv('a_b designpoint.csv')

In [45]: ab_design.head(5)

Cut[45]: a b

1.000000e-10 | 1.000000e-10

1.519770e-05 | 1.000000e-10

3.039520e-05| 1.000000e-10

4.559280e-05 | 1.000000e-10

2luln][r]e

6.079030e-05 | 1.000000e-10

Figure 58.  Screen Shot of Campaign Model Code within Python
Notebook-11

In [46]: ab DP Campaign=list

for 1 in range(len(ab_design)):
a = ab design.ix[i]['a’]
b = ab_design.ix[1]['b']
x win=0

prob_x_win= 0
xcasulty=[]
yocasulty=[]

temp = lanch(a,b)
x=x+temp[0]
y=yt+temp[1]
X win = x_win+(=<y)
xcasulty.append (x)
ycasulty.append(y)
prob_x win = x_win/ 1000.0
prob y win = 1- prob x win
full list=[a,b,x win,prob x_win, prob_y_win, mean(xcasulty),mean{ycasulty)]
ab DP Campaign.append (full list)

In [47]: ab DP Campaign—pd.DataFrame({ab DP Campaigm,columns=['a','b','x win', 'prob x win','prcb y win', 'mean(xcasulty)', 'mean(ycasulty)'l)

In [48]: ab DP Campaign.columns = ['a','b','x win','prob x win', 'preb y win', 'mean xcasulty', 'mean ycasulty']

Figure 59.  Screen Shot of Campaign Model Code within Python
Notebook-12
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In [49]:

Cut[49]:

In [S0]:

In [51]:

In [52]:

In [53]:

In [54]:

Out[54]:

In [55]:

In [56]:

In [57]:

In [58]:

ab_DPF_Campaign.head(3)

a b X_win [ prob_x_win | prob_y_win | mean_xcasulty | mean_ycasulty
0| 1.000000e-10| 1.000000e-10 (477 0.477 0.523 66.576 66.226
1(1.519770e-05|1.000000e-10(0 0.000 1.000 76.000 0.000
2(3.039520e-05 | 1.000000e-10(0 0.000 1.000 76.000 0.000
3(4.559280e-05 | 1.000000e-10(0 0.000 1.000 76.000 0.001
4|6.079030e-05 | 1.000000e-10|0 0.000 1.000 76.000 0.000
ab_DP_Campaign.to_csv('output5_ab DP Campaign.csv')

ab_NOLH_Raw=pd.read csv('NC

tput_appended.csv'}

ab NOLH Raw.head()

Identifier | DP ::'QACS' ':C“:S‘SCS' CommlLat :;l'mg EE_::ng- ACStealth E:f:ﬁg E&Eﬁg- ...| Sqd2Cas | Sqd3Cas | Sqd4Cas | Sqd11nj |Sqd2Inj| Sqd:
0|1E0 1 |339375 |8%00 |08 63504 (8300 |21 66875 (8800 |..[0 0 2 0 0 0
1|10E0 1 |339375 [8%00 |08 63594 (8300 |21 66875 (8800 |..[0 0 2 0 0 0
2|10E0 1 |339375 [8%00 |0.8 63594 (8300 |21 66875 (8800 |..[0 0 1 0 0 0
3|10E0 1 |339375 [8%00 |08 63594 (8300 |21 66875 |8800 .|o 0 0 0 0 0

Figure 60. Screen Shot of Campaign Model Code within Python
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ab_NOLE Raw_Campaign=list ()
replications= 30

for

ab_NOLH Raw_Campaign=pd.DataFrame (ab_NOLE_Raw_Campaign,columns=['a','b','x

<

ab_NOLH Raw_Campaign.columns = ['a’,'b','x w

i in range(len{ab NOLH Raw)):
a = ab_NOLE Raw.ix[i]['a']

b = ab_NOLH Raw.ix[1]['b']

% win=0

prob_x win= 0

xcasulty=[]

ycasulty=[]

ange (replications):

temp = lanch{a,b)

x=x+temp[0]
y=y+temp[1]
x win = x_wint (x<y)
xcasulty.append (x)
yoasulty.append (y)
prob x win = x win/ 50.0
prob_y win = 1- prob x_win
full 1ist=[a,b,x win,prob x win, pzob y win, mean{xcasulty),mean(ycasulty)]
ab_NOLH Raw_Campaign.append(full list)

ab_NOLH Raw_Campaign.head(5)

a b x_win | prob_x_win | prob_y_win | mean_xcasulty | mean_ycasulty
0(0.000128 | 0.000000 |0 0.0 1.0 76.000000 0.000000
1(0.000134|0.000000 |0 0.0 1.0 76.000000 0.000000
2|0.000062 | 0.000124 |30 0.6 0.4 39.833333 75.666667

Figure 61. Screen Shot of Campaign Model Code within Python
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In [61]
In [62]: ab_NOLH_Summary=pd.rasd_csv('NOLHOutput appended summary.cse')
In [63]: ab_NOLH_Summary.head(5)
Qut([63): "
Formula :
AWACS- | AWACS- ac-  |Pe EnAc- | DS Mean(a |,
Taenutier (DP | L commuat| Co :’::ng- Acsteamn | o :’::ﬂg- | Mean(steps) |Meana |Mean b | P(Win) (u-n!: b
of blue :
on red)) |
o|e0 1 |339375 |ss00 0.8 63594 (8300 |31 66875 |8800  |..|3942.573 0.000083 | 0.000074 |0.472  |0.000085 |0
1| I0E1 2 391250 B&OOD 0.9 63828 8100 14 B2656 B200 - | 2B49. 768 0.00007 7 | 0.000084 | 0.545 0000081 |0
Figure 62. Screen Shot of Campaign Model Code within Python
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In [64]: ab_NOLH Summary Campaign=listi)

prob x_win= 0
xeasuliy=(]
yoasulty=[]
for 3 in range(1000}:
P
y=0 #x ra . .
for X in range(d):
temp = lanch(a,b)
x=xttemp (0]
y=yitenp[1]
*®_win = x_wind(x<y)
xcasulty.append (x)
yoasulty

J®_win,prob_wx_win, preb_y_win, mean(xeasulty).mean(yeasuloy)]
mary Campaign.append{full_list)

Figure 63. Screen Shot of Campaign Model Code within Python
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In [65]:  ab_NOLH Summary Campaign=pd.DataFrame(ab NOLH Summary Campaign,columns=['a','b','x win','prob x win','prob_y win', 'mean{xcasulty}’,
< >

In [66]: | ab NOLH Summary Campaign.columns = ['a’,'b','x win','prob x win','prob y win', 'mean xcasulty’', 'mean ycasulty']

In [67]: ab NOLH Summary_ Campaign.head()

out[67]: a b x_win | prob_x_win | prob_y_win | mean_xcasulty | mean_ycasulty
0| 0.000083 | 0.000074 | 244 0.244 0.756 69.913 61.634
1|0.000077 [0.000084 | 672 0.672 0.328 63.306 68.902
2|0.000101 (0.000054 |0 0.000 1.000 75.567 40.477
3|0.000102 (0.000055 |0 0.000 1.000 75.651 40.629
4|0.000071 (0.000090 | 907 0.907 0.093 57.215 72.315

In [68]:  ab NOLH Summary Campaign.to_csv('output7_Summarized Linked Campaign.csv')

In [69]: | #End of Campa Model code.

Figure 64. Screen Shot of Campaign Model Code within Python
Notebook-17
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